Крылатые ракеты россии и сша. Авиационный вариант ракеты "Гарпун"

В США успешно испытали новые противокорабельные ракеты (ПКР) дальнего радиуса действия . Ракеты производства компании «Локхид Мартин» были запущены из ВПУ – вертикальной пусковой установки Mk 41. По информации компании «Локхид Мартин», всего было осуществлено 4 пуска имитаторов ракет LRASM. Целью проведенных испытаний была проверка выхода ракет из ВПУ без повреждений ее конструкции, покрытия самих ракет, приемника воздушного давления.

Испытания были проведены для оценки уровня риска использования новых противокорабельных ракет из ВПУ Mk 41 и проводились в рамках работ по интеграции новых ПКР в состав современного корабельного вооружения.

Ракеты проекта LRASM – это высокоточные, автономные ПКР, запуск которых происходит вне зоны объектовой ПВО противника, ракеты предназначены для использования в ВВС и ВМС США. В конце 2013 года компания «Локхид Мартин» планирует провести летные испытания варианта ракеты LRASM BTV (Boosted Test Vehicle) из той же вертикальной пусковой установки, а в следующем году проведет 2 запуска управляемых испытательных ракет за счет федерального бюджета (4 проведенных ранее пуска были осуществлены на деньги компании).

Новая американская ПКР LRASM создается для замены уже устаревшей ПКР «Гарпун», спроектированной компанией «Боинг». Необходимость разработки новой противокорабельной ракеты вызвана тем, что имеющиеся в арсенале американских ВМС ракеты не обладают достаточной дальностью полета и крайне уязвимы при прорыве современной корабельной системы ПВО. Работы в рамках программы LRASM предусматривают создание вариантов оружия, которое может быстро поступить на вооружение ВМС США после окончания серии летных испытаний в 2013-2014 годах.

Противокорабельная ракета LARSM может оснащаться фугасной или бронебойной боевыми частями и является всепогодным автономным оружием, которое может использоваться в любое время суток. На ПКР смонтирована многорежимная головка самонаведения, линия передачи данных, доработанная цифровая помехозащищенная система спутниковой навигации, которая предназначена для обнаружения и поражения наиболее приоритетных целей в корабельном ордере противника.

С момента снятия с вооружения американских ВМС противокорабельной версии знаменитой ракеты «Томагавк» – TASM – флот США оказался без дальнобойного противокорабельного оружия. Единственной специализированной ПКР (не считая возможности использовать против кораблей противника «Стандарты») осталась ракета RGM-86 «Гарпун». Это достаточно эффективное оружие, но радиус действия данной ракеты даже в лучших ее модификациях не превышал рубежа в 280 км.

Достаточно долгое время в ВМС США не обращали на эту проблему особого внимания. «Холодная война» благополучно закончилась: флот России, многократно сократившийся в размерах, перестал представлять тот уровень угрозы, которая могла бы потребовать от американских военных разработки новой дальнобойной ПКР. Адмиралы американского флота абсолютно были уверены в том, что палубные самолеты F/A-18, вооруженные ракетами «Гарпун» массированной атакой в состоянии уничтожат абсолютно любой существующий надводный корабль противника. Для тех редких случаев, при которых бы надводный корабль противника приближался на дистанцию поражения к надводному кораблю США – было достаточно и «Гарпунов» для самообороны.

Во всем этом был лишь 1 недостаток: «Гарпун», являясь ракетой достаточно старого исполнения, никак не подходил к современным вертикальным пусковым ячейкам Mk-41. В то же время командование американским флотом в 2000-х годах избавились от всех ракет, которые не подходили к этим универсальным ПУ (тем самым кардинально уменьшив расходы на обслуживание пусковых систем), но ракету «Гарпун» военные вынуждены были сохранить вместе с его контейнерными пусковыми установками Mk-141.

При этом традиционный кормовой «Шалашик», состоявший из 2-х направленных в противоположные стороны ПУ Mk-141, таил в себе ряд недостатков. Такие пусковые установки занимали достаточно много места на корабельной палубе и мешали другим системам вооружений. Для пуска ПКР «Гарпун» необходимо было повернуться бортом к противнику (а это требовало времени: помимо этого, в одном залпе можно было выпустить не более ½ всех ракет). Наконец – и это было самым главным недостатком – торчащие пусковые установки значительно увеличивали ЭПР корабля и его заметность на радарах противника.

Адмиралы ВМС США пытались решить данную проблему. Но на версию «Гарпуна», приспособленную для вертикального запуска, Конгресс в свое время (еще в 90-е годы) денежных средств не дал. «Холодная война» закончилась, флот США провел самое масштабное списание вооружений в своей истории и мог обойтись и существующими противокорабельными ракетами. Однако к 2000-м годам ситуация изменилась.

Быстрый рост китайского флота – особенно покупка китайцами эсминцев с дальнобойными ЗРК и авианосца «Ляонин» (бывший «Варяг») стали причиной серьезного беспокойства американских военных. Патрулирующие небо истребители и дальнобойные зенитные ракеты делали радиус действия «Гарпунов» не таким уж безопасным. Помимо этого, значение технологий уменьшения ЭПР значительно выросло по мере развертывания более совершенных головок самонаведения противокорабельных ракет.

В принципе, флот США без особых проблем мог вернуть на вооружение TASM – благо, оба ее компонента, «Томагавк» и «Гарпун» по-прежнему оставались в производстве. Но данные ПКР были уже прошлым веком данного вида вооружений. Американский флот нуждался в лучшем оружии. Именно поэтому в 2009 году, агентство перспективных оборонных исследований – DARPA – обратилось к компании Lockheed с предложением о создании перспективной дальнобойной ПКР, относящейся к новому поколению. В ходе работ по данному проекту определились 2 перспективных направления:

— LRASM-A – дальнобойная ПКР, построенная по стелс-технологии и перемещающаяся с дозвуковой скоростью.
— LRASM-B – сверхзвуковая ПКР, по схеме аналогичная русско-индийской разработке «БраМос».

В январе 2012 года, после проведения тщательного сравнения проектов, от проекта LRASM-B было решено отказаться. США не обладают особенно богатым опытом разработки сверхзвуковых ракет, и неминуемо оказалась бы на этом поле в роли догоняющей стороны. При этом в стелс-технологиях США успешно лидируют. Кроме того, эксперты считают, что на решение, которое поставило крест на проекте LRASM-B, повлияло испытание Тайванем собственной сверхзвуковой ПКР. Американцы посчитали, что в самом крайнем случае всегда смогут обратиться к своему давнему союзнику за лицензией не ее впуск. В результате, все усилия инженеров компании Lockheed были сосредоточены на проекте LRASM-A.

LRASM-A создавалась подразделением «Страйк контрол», расположенным в Орландо (штат Флорида), как малозаметная дозвуковая крылатая ракета, оснащенная дополнительными датчиками, обладающая высокой выживаемостью. Ракета создавалась на базе проекта КР воздушного базирования AGM-158B JASSM-ER с установкой дополнительных системам и датчиков. Предполагается, что ракета LRASM-A будет оснащена осколочно-фугасной БЧ. Для обеспечения боевой живучести новая противокорабельная ракета должна совершать энергичные маневры, что потребует существенного увеличения характеристик двигательной установки.

В качестве носителей новой противокорабельной ракеты предполагаются надводные корабли, получившие вертикальные пусковые установки Mk-41, самолеты F-35 и F/A-18F. Также интерес к развертыванию подобных ракет уже выразили ВВС США, которые хотят получить возможность использовать ракеты с борта стратегических бомбардировщиков B-1B. Насчет возможности развертывания ракеты на подлодках пока что ничего не известно.

Предполагается, что ракета LRASM использует комплексную, многокомпонентную систему поиска и идентификации надводных целей. Помимо инерциально-спутниковой системы наведения ракета оснащается радиолокационной головкой самонаведения на движущийся объект и оптико-электронной системой наведения. При этом в памяти бортового компьютера ракеты хранится целый архив образов потенциальных кораблей противника в различных ракурсах, что помогает ПКР поражать нужные цели.

ПКР может быть запущена в район поиска без первоначального целеуказания: выйдя в заданный сектор, ракета самостоятельно подбирает схему поиска и пытается найти цель. Во время полета ракета в непрерывном режиме поддерживает двусторонний канал связи со спутниковыми системами, с носителем, уточняя информацию относительно нахождения целей, оптимальной траектории движения и потенциально опасных районов поиска. Сенсорная аппаратура ракеты в состоянии идентифицировать встреченные корабли, и находить среди них те, которые совпадают с предварительно запрограммированными параметрами цели.

Определив данные параметры, противокорабельная ракета LRASM формулирует схему предстоящей атаки. Летящие ракеты могут поддерживать между собой связь и могут производить комплексную атаку на надводные соединения противника. Атака целей производится на сверхмалой высоте полета: при этом ПКР выбирает оптимальный маршрут к цели, избегая поражения кораблями сопровождения и выбирая вектор атаки, который наименее выгоден для средств противодействия ПВО противника. При этом ракета активно использует аппаратуру радиоэлектронной борьбы.

Развитие военно-космической техники в пятидесятые годы происходило главным образом в направлении создания межконтинентальных средств, способных наносить ущерб стратегического характера. Вместе с тем у человечества уже был накоплен опыт, полученный при разработке особого типа боеприпасов, сочетавшего свойства самолетов и ракет. Они приводились в жидкостным или твердотопливным двигателем, но при этом использовали плоскости, бывшей элементом общей конструкции. Это были крылатые ракеты. России (тогда СССР) они были не так важны, как межконтинентальные, но работа над ними уже велась. Через десятилетия она увенчалась успехом. Несколько образцов этого вида вооружений уже состоят в арсенале или вскоре займут свое место в строю средств, сдерживающих потенциального агрессора. Они вызывают страх и полностью отбивают желание напасть на нашу страну.

«Томагавки» с нейтронной бомбой - кошмар восьмидесятых

В самом конце восьмидесятых советская пропаганда уделяла большое внимание двум новым видам американского оружия. Нейтронная бомба, которой грозил Пентагон «всему прогрессивному человечеству», по своим убийственным свойствам могла посоперничать только с «Томагавками». Эти акулообразные снаряды с тонкими короткими плоскостями получили возможность подкрадываться к целям на советской территории незаметно, прячась от систем обнаружения в оврагах, руслах рек и других естественных углублениях земной коры. Очень неприятно ощущать собственную незащищенность, и граждане СССР возмущались тем, что коварные империалисты снова втягивают страну развитого социализма в новый виток гонки вооружений, и виной тому были эти крылатые ракеты. России нужно было чем-то отвечать на угрозу. И только некоторые особо информированные люди знали о том, что на самом деле нечто подобное уже разрабатывается в Советском Союзе, и дела идут не так уж плохо.

Американский топор

Прообразом всех современных крылатых ракет можно назвать немецкий самолет-снаряд V-1 (Фау-1). Внешне он напоминает американский «Томагавк», созданный четыре десятилетия спустя: те же прямые плоскости и узкий фюзеляж, простой до примитивности силуэт. Но разница есть, и очень большая. Боеприпас, получивший английское название Cruise Missile, - это не просто ракета, снабженная крылом, это нечто большее. За внешней простотой скрывается очень сложная техническая схема, главным элементом которой служит сверхбыстродействующий компьютер, мгновенно принимающий решения об изменении курса и высоты, во избежание столкновения с преградами. Это необходимо для полета на предельно малой высоте со скоростью, достаточной для соблюдения другого условия внезапности, - быстроты доставки заряда к цели. А еще важно было, чтобы хорошо работали «глаза» этой «акулы». Радар, установленный в носовой части снаряда, видел все преграды и передавал информацию о них электронному мозгу, который анализировал рельеф и выдавал управляющие сигналы рулям (предкрылкам, закрылкам, элеронам и пр.). Полноценная сверхзвуковая крылатая ракета у американцев тогда не получилась: на предельные режимы «Томагавк» выходит только на завершающем участке траектории, но это не мешает ему представлять реальную угрозу и сегодня, особенно по отношению к странам, не обладающим совершенными системами ПВО и ПРО.

Неизвестно доподлинно, что побудило советское руководство дать указание о начале разработок КР. Возможно, разведка сообщила о начале американских изысканий в этой области, но не исключено, что сама идея, возникшая в недрах засекреченных НИИ, заинтересовала кого-то из Министерства обороны. Так или иначе, в 1976 году работы начались, и срок их завершения был установлен небольшой - шесть лет. С самого начала наши проектировщики пошли по иному пути, чем их коллеги из США. Дозвуковые скорости их не прельщали. Ракета должна была преодолевать все рубежи защиты вероятного противника на сверхмалых высотах. И на сверхзвуке. К концу десятилетия были представлены первые опытные образцы, которые показывали на полигонных испытаниях отличные результаты (до 3 М). Секретный объект непрерывно совершенствовался, и в следующем десятилетии мог лететь уже быстрее четырех скоростей звука. Только в 1997 году мировая общественность смогла увидеть это чудо техники на выставке МАКС в павильоне научно-производственного объединения «Радуга». Современные крылатые ракеты России являются прямыми наследниками советской Х-90. Даже название это сохранено, хотя изменений упомянутое оружие претерпело множество. Элементная база стала другой.

Запуск этой ракеты предполагалось осуществлять с Ту-160, огромного стратегического бомбардировщика, способного нести в своем бомбовом отсеке 12-метровые боеприпасы с раскладывающимися плоскостями. Носитель остался прежним.

«Коала»

Современная российская крылатая ракета Х-90 «Коала» стала легче и короче своей прародительницы: ее длина менее 9 метров. Известно о ней немного, главным образом то, что само ее существование (без оглашения подробностей) вызывает озабоченность и раздражение наших американских партнеров. Причиной опасений стал повышенный радиус полета снаряда (3500 км), что формально нарушает условия договора о РСМД (ракетах средней и малой дальности). Но не это пугает США, а то, что эти стратегические крылатые ракеты (так их называют, хотя океан они преодолеть не могут) способны «взломать» все рубежи системы ПРО, которую США ненавязчиво, но упорно придвигают к российским границам.

Этот образец уже получил свое «натовское» обозначение: Koala AS-Х-21. У нас его называют иначе, а именно гиперзвуковым экспериментальным летательным аппаратом (ГЭЛА).

Общий принцип его действия состоит в том, что, покинув бомболюки Ту-160 на высоте от 7 до 20 километров, он распрямляет дельтовидное крыло и оперение, затем запускается ускоритель, разгоняющий снаряд до сверхзвука, а уже после этого происходит запуск маршевого двигателя. Скорость на снижении доходит до 5 М, и на ней ГЭЛА мчится к цели, которую уже можно считать обреченной. Перехватить эту КР практически невозможно.

«Уран», флотский и авиационный

Противокорабельные ракеты также чаще всего бывают крылатыми. Их траектория, как правило, сходна с боевыми курсами наземных собратьев. Разработкой этого вида вооружений в СССР занималось конструкторское бюро «Звезда». В 1984 году главному конструктору Г. И. Хохлову было поручено создание комплекса средств борьбы с надводными морскими целями водоизмещением до пяти тысяч тонн (то есть относительно небольших) в условиях активного электронного противодействия и сложной метеорологической обстановки. Результатом усилий коллектива стала Х-35 «Уран», по своим характеристикам она примерно соответствует параметрам американской КР «Гарпун» и может применяться в залповом режиме. Дальность поражения равна 120 км. Комплекс, оснащенный системой обнаружения, идентификации и наведения, устанавливается не только на боевых единицах ВМФ, но и на авиационных носителях самолетах МиГ-29, Ту-142, Як-141 и других), что значительно расширяет возможности этого оружия. Запуск производится на сверхмалых высотах (от 200 м), противокорабельные ракеты этого типа несутся на скорости более 1000 км/ч практически над волнами (от 5 до 10 м, а на конечном отрезке траектории и вовсе опускается до трех метров). Учитывая небольшие размеры снаряда (4 м 40 см в длину), можно допустить, что перехват его очень проблематичен.

«Сотки Х»

После того как средства ПВО, как советские, так и американские, достигли в своем развитии высоких возможностей, от применения свободнопадающих боеприпасов отказались практически все страны. Наличие добротных, надежных и мощных стратегических бомбардировщиков побудило военное руководство искать им применение, и оно нашлось. В США Б-52, а в СССР Ту-95 стали использовать в качестве летающих пусковых установок. В девяностые годы главным боеприпасом российских носителей тактических и стратегических зарядов, доставляемых к цели самолетами без пересечения рубежей ПВО, стали Х-101. Параллельно с ними разрабатывались почти полностью идентичные образцы, способные нести ядерные заряды. Обе КР в настоящее время засекречены, знать их тактико-технические характеристики положено только ограниченному кругу лиц. Известно лишь о том, что некий новый образец на вооружение принят, отличается он повышенным боевым радиусом (более пяти тысяч километров) и потрясающей точностью поражения (до 10 метров). Боеголовка Х-101 имеет осколочно-фугасную начинку, и для нее является наиболее важным именно этот параметр. Носитель спецзаряда может быть и не таким точным: при взрыве мощностью в десятки килотонн несколько метров вправо или влево большой роли не играют. Для Х-102 (ядерного носителя) важнее дальность.

«Крылатая» стратегия

Все предметы, в том числе и типы вооружений, можно рассматривать только в аспекте сравнения. Существуют различные оборонные доктрины, и в то время, когда одни страны стремятся к абсолютному глобальному доминированию, другие просто хотят обезопасить себя от возможных агрессивных поползновений. Если сравнивать крылатые ракеты России и США, то можно прийти к выводу о том, что технические параметры не превышают возможностей их соперников. Обе стороны делают ставку на увеличение боевого радиуса, что постепенно выводит КР из разряда тактических средств, придавая им все большую «стратегичность». Мысль о том, чтобы получить возможность разрешить геополитические противоречия путем нанесения неожиданного и всесокрушающего удара, не впервые посещает головы пентагоновских генералов - достаточно вспомнить планы бомбардировок советских крупных промышленных и оборонных центров, разработанные еще в конце сороковых и начале пятидесятых годов, сразу же после появления у США достаточного количества атомных боеголовок.

AGM-158B увеличенной дальности, США

Появление нового образца вооружений в США является событием общенационального масштаба. Налогоплательщикам приятно осознавать, что на деньги, уплаченные ими в бюджет, государство приобрело еще одно доказательство американского глобального доминирования. Рейтинг правящей партии повышается, избиратели ликуют. Так было и в 2014 году, когда стратегические силы США получили новую КР AGM-158B воздушного базирования, созданную в рамках оборонной программы Joint Air To Surface Standoff Missile Extended Range, сокращенно JASSM-ER, что означает, что это средство предназначено для нанесения ударов по земной поверхности и имеет расширенную дальность применения. Широко разрекламированное новое оружие, если судить по опубликованным данным, ни в чем не превосходит Х-102. Дальность полета AGM-158B указана расплывчато, в широком диапазоне - от 350 до 980 км, что означает ее зависимость от массы боевой части. Скорее всего, реальный радиус с ядерным зарядом у нее такой же, как и у Х-102, то есть 3500 км. Крылатые ракеты России и США имеют примерно одинаковую скорость, массу и геометрические размеры. Говорить об американском технологическом превосходстве не приходится еще и по причине лучшей точности, правда, как уже отмечалось, такого уж большого значения при ядерном ударе она не имеет.

Другие КР в России и США

Х-101 и Х-102 - не единственные крылатые ракеты на вооружении России. Кроме них боевое дежурство несут и другие образцы, оснащенные пульсирующими воздушно-реактивными двигателями, как 16 Х и 10 ХН (они пока опытные), противокорабельные КС-1, КСР-2, КСР-5, с бризантными боеголовками фугасно-проникающего или осколочно-фугасного или ядерного действия. Можно вспомнить и о более современных КР Х-20, Х-22 и X-55, ставших прообразом Х-101. А еще есть «Термиты», «Москиты», «Аметисты», «Малахиты», «Базальты», «Граниты», «Ониксы», «Яхонты» и другие представители «каменной» серии. Эти крылатые ракеты России уже много лет стоят на вооружении авиации и флота, и о них общественности известно достаточно много, хотя и не все.

У американцев также есть несколько типов КР более раннего поколения, чем AGM-158B. Это тактический «Матадор» MGM-1, «Акула» SSM-A-3, «Борзая» AGM-28, упомянутый «Гарпун», «Быстрый ястреб» универсального базирования. Не отказываются в США и от проверенного «Томагавка», но ведут работы над перспективной X-51, способной лететь на гиперзвуковых скоростях.

В других странах

Даже в дальних краях, где о российской или американской военной угрозе военные аналитики могут говорить лишь в фантастико-гипотетическом аспекте, инженеры и ученые занимаются разработкой собственных крылатых ракет. Не очень удачный опыт боевых действий на Фолклендских островах побудил руководство Аргентины выделить средства на проектирование «Табано AM-1». Пакистанская «Хатф-VII Бабур» может запускаться с наземных установок, кораблей и субмарин, имеет дозвуковую скорость (около 900 км/ч) и дальность до 700 км. Для нее даже предусмотрена, помимо обычной, ядерная боевая часть. В КНР производится три типа КР (YJ-62, YJ-82, YJ-83). Тайвань отвечает «Сюнфэном 2Е». Ведутся работы, порой очень успешные, в европейских странах (Германии, Швеции, Франции), а также в Британии, цель которых не состоит в том, чтобы превзойти крылатые ракеты России или США, а получить для собственных армий эффективное боевое средство. Создание такой сложной и высокотехнологичной техники обходится слишком дорого, а передовые достижения в этой области доступны только сверхдержавам.

Давайте от авиации вновь вернемся к ракетам. Тем более что мое повествование медленно, но верно, приближается к знаменательной дате – началу космической эры.

Когда американское небо бороздили ракетные самолеты, на земле в арсенале «Редстоун» велась разработка первой американской баллистической ракеты. Эту работу поручили команде фон Брауна, для которой она стала «лучом света в темном царстве». После нескольких лет относительного забвения немцам предоставили шанс вновь найти себя. И они этой возможностью воспользовались в полной мере.

Ракета «Редстоун» являлась прямым потомком «Фау-2». Она во многом походила на свою предшественницу. В качестве топлива в ней также использовались этиловый спирт и жидкий кислород. Центробежный турбонасос подачи топлива приводился в действие путем разложения перекиси водорода. Управление полетом ракеты осуществлялось с помощью четырех графитовых газовых рулей, помещенных в потоке истекающих газов.

Вместе с тем были и отличия от ракеты времен Второй мировой войны. Первое из них – это габариты: «Редстоун» имела длину 21,2 метра, диаметр 1,8 метра, стартовую массу 18 тонн. Тяга ракетного двигателя составляла при старте 29,5 тонны.

Для сравнения, «Фау-2» имела длину 14 метров, диаметр 1,65 метра, стартовая масса 12,9 тонны, тяга двигателя при старте 25 тонн. Второе отличие – отделяемая головная часть массой до 5 тонн (у «Фау-2» неотделяемая головная часть имела массу всего 750 килограммов). Дальность полета ракеты была не очень большой – около 300 километров. То есть летала не дальше «Фау-2». Для справки: советские ракеты к началу 1950-х годов летали гораздо дальше. Однако американская армия не ставила на тот момент задачу создания ракеты большой дальности.

Во-первых, основным средством доставки ядерного оружия к целям на территорию Советского Союза генералы Пентагона считали стратегические бомбардировщики, флот которых рос в США от года к году.

Во-вторых, стартовые площадки «Редстоунов» предполагалось разместить в непосредственной близости от территории СССР, что, несмотря на невысокую дальность, делало эти ракеты стратегическим оружием.

Ну и, в-третьих, ракета «Редстоун» изначально рассматривалась как промежуточный, а не конечный результат работы ракетчиков. Поэтому ей можно было простить многие недостатки.

Первый испытательный пуск «Редстоуна» был произведен 20 августа 1953 года с мыса Канаверал и закончился неудачей. А первый успешный, точнее, частично успешный, состоялся только 27 января 1954 года.

Вскоре после этого «Редстоун» под именем «Юпитер-А» была принята на вооружение американской армией и отправилась «нести службу» к границам Советского Союза.

Боевая история «Редстоунов» не столь интересна, как у других ракет. С самого начала она задумывалась как промежуточное звено, таковым и осталась. Но вот как средство исследования космического пространства эта ракета смогла проявить себя гораздо ярче. Тяжелая головная часть делала «Редстоун» почти идеальной первой ступенью для многоступенчатых ракет. Что и было использовано в полной мере.

Первое яркое достижение этой ракеты датируется 20 сентября 1956 года, когда с помощью «Редстоуна» под номером 27 с мыса Канаверал была запущена составная система на твердом топливе. Вторая ступень этой ракеты представляла собой связку из четырех ракет на твердом топливе – уменьшенные ракеты типа «Сержант», получившие название «Малышка Сержант».

Третьей ступенью системы являлась одна ракета «Малышка Сержант».

Эта система показала на испытаниях следующие результаты: первая ступень («Редстоун») упала в 100 километрах от стартовой позиции, вторая – на расстоянии 614 километров, третья была найдена в 5310 километрах от мыса Канаверал. Эта последняя ракета достигла высоты 1096 километров, что стало на тот момент абсолютным рекордом. Описанная выше система получила наименование «Юпитер-С» и в 1958 году была использована для запуска первого американского спутника Земли.

Вторым достижением следует признать «участие» «Редстоу-на» в программе «Меркурий». Именно эту ракету использовали американские ракетчики во время суборбитальных полетов Алана Шепарда и Вирджила Гриссома в 1961 году. Для вывода пилотируемого корабля на орбиту она была слабовата, а вот для «прыжка в космос» – в самый раз. К тому моменту она стала весьма надежной системой и могла обеспечить необходимую безопасность астронавтов.

В активе «Редстоуна» в первоначальной конфигурации и в варианте «Юпитер-С» также запуск нескольких искусственных спутников Земли. Например, в 1968 году эта ракета была использована для запуска первого австралийского спутника WRESAT.

Но самое главное, что принесла американской космонавтике ракета «Редстоун», – это то, что вывела на первый план Вернера фон Брауна и его «ракетную команду». Достигнутый ими успех продемонстрировал правительственным кругам США возможность и необходимость активного использования немцев в гонке за лидерство в космосе. Надежда на собственные силы в середине 1950-х годов не оправдалась, а быть на вторых ролях американцам не хотелось.

Разработка «Редстоуна», по сути дела, завершила первый этап развития американского ракетостроения. Дальше уже был космос, и я перехожу к рассказу об этом периоде. Но сначала небольшое отступление.

ТАСС-ДОСЬЕ. 22 февраля 2018 года американская компания SpaceX осуществила запуск своей ракеты-носителя Falcon 9 с испанским спутником наблюдения за земной поверхностью PAZ и двумя экспериментальными микроспутниками Microsat.

Ракета стартовала с базы ВВС США Ванденберг (штат Калифорния), ее первая ступень использовалась повторно (ранее участвовала в запуске 24 августа 2017 года).

Первоначально PAZ планировалось вывести на околоземную орбиту в 2015 году с помощью российско-украинской ракеты «Днепр», однако запуск постоянно переносился. Microsat являются прототипами телекоммуникационных аппаратов будущей спутниковой системы SpaceX, которую компания планирует создать к 2027 году и обеспечить с ее помощью покрытие высокоскоростным интернетом всей поверхности Земли.

Falcon 9 (англ. «Сокол») - американская частная ракета-носитель частично многоразового использования. Предназначена для запуска многоразового космического корабля Dragon, а также различных спутников.

Ракета разработана в 2005-2008 годах компанией SpaceX (Space Exploration Technologies, город Хоторн, штат Калифорния), основанной в 2002 году канадско-американским инженером, миллиардером Илоном Маском . Создана на базе Falcon 1, запуски которой проводились в 2006-2009 годах. В 2011 году стоимость программы по разработке Falcon 9 оценивалась Национальным управлением США по аэронавтике и исследованию космического пространства (NASA) в $3 млрд 977 млн, а SpaceX - в $1 млрд 659 млн В декабре 2008 года NASA и SpaceX подписали контракт об использовании созданных компанией ракеты Falcon 9 и корабля Dragon для доставки грузов на Международную космическую станцию (МКС), предусматривающий 12 миссий. На эти цели NASA выделило компании $1,6 млрд (в случае заказа дополнительных полетов общая сумма контракта возрастает до $3,1 млрд). Впоследствии была достигнута договоренность об увеличении миссий до 20.

Модификации

Всего разработано пять модификаций ракеты-носителя. В 2010-2013 годах проводились запуски базовой версии ракеты Falcon 9 v1.0.

Затем появилась модификация Falcon 9 v1.1 (запускалась в 2013-2015 годах) и ее конфигурация Falcon 9 v1.1 ® с возвращаемой ступенью (2014-2016). На запусках Falcon 9 v1.1 ® отрабатывался спуск и посадка многоразовой ступени.

Следующим этапом стало создание Falcon 9 FT (FT - Full Thrust, «полная тяга», или Falcon 9 v1.2). Третья модификация оснащена возвращаемой ступенью, которая способна выдерживать около двух-трех повторных запусков. Впервые Falcon 9 FT стартовала 22 декабря 2015 года, эксплуатируется в настоящее время.

В октябре 2016 года Маск сообщил о начале работ по модификации Falcon 9 FT (Block 5), которая станет окончательной. Компания SpaceX рассчитывает использовать ее многоразовую ступень не менее десяти раз и проводить повторные запуски через 24 часа после посадки. Переходной версией между третьей и пятой модификациями будет Falcon 9 FT (Block 4), ее первый запуск был успешно проведен 14 августа 2017 года.

Характеристики

Falcon 9 - двухступенчатая ракета-носитель тяжелого класса. Длина (высота) эксплуатируемой версии - 70 м, диаметр - 3,66 м, стартовая масса - до 550 т.

Заявленная грузоподъемность - порядка 8,3 т на геопереходную орбиту и 22,8 т на низкую опорную. За время эксплуатации самый тяжелый полезный груз, выведенный Falcon 9 в космос, составляет около 9,6 т. Столько весят десять спутников Iridium NEXT с адаптером, которые запускались одновременно в январе, июне, октябре и декабре 2017 года.

Ракета оснащена жидкостными ракетными двигателями производства SpaceX: на первой ступени установлено 9 Merlin 1D, на второй - один Merlin Vacuum. В качестве топлива используется керосин (окислитель - жидкий кислород). Топливные баки изготовлены из алюминий-литиевого сплава.

Для повышения точности выведения полезного груза на орбиту система управления ракеты сопряжена со спутниковой навигационной системой GPS. Для надежности Falcon 9 производителем разработана автоматическая остановка процедуры запуска: при обнаружении проблемы происходит откачка топлива, и ракета снимается со стартовой площадки. Затем после выяснения причины и доработки она используется для повторного пуска. Кроме того, предусмотрена возможность работы при аварийной остановке одного или двух двигателей первой ступени во время полета.

Возвращаемая ступень

SpaceX разработана технология по возвращению на землю отработавшей первой ступени, оснащенной четырьмя раскладывающимися посадочными опорами для мягкого приземления. Управляемый спуск осуществляется с помощью торможения двигателей и парашюта. После посадки на специальную морскую платформу (длина - 90 м, ширина - 50 м) судна-робота в акватории Мирового океана или на спецплощадку на территории базы ВВС США на мысе Канаверал (штат Флорида) первая ступень может использоваться повторно.

Впервые эксперимент по возвращению первой ступени был проведен 29 сентября 2013 года после запуска Falcon 9 v1.1. Ступень планировалось плавно спустить и приводнить в океан, однако из-за сильного вращения она упала на воду и разрушилась. Первая успешная посадка на землю состоялась 22 декабря 2015 года (запускалась Falcon 9 FT), на морскую платформу - 8 апреля 2016 года (Falcon 9 FT).

В общей сложности к 22 февраля 2018 года мягкую посадку ступени удалось осуществить в 21 случае: девять раз на землю и 12 на морскую платформу. Шесть раз ранее возвращенные ступени ракеты использовались повторно: 31 марта, 23 июня, 12 октября, 15 и 23 декабря 2017 года, 1 февраля 2018 года (запускались 8 апреля 2016 года, 14 января, 19 февраля, 4 и 25 июня, 1 мая 2017 года соответственно).

Статистика запусков

Запуски Falcon 9 осуществляются с арендуемых SpaceX пусковых площадок баз ВВС США Ванденберг и на мысе Канаверал, а также Космического центра им. Джона Кеннеди, расположенном на острове Мерритт северо-западнее мыса Канаверал. Кроме того, SpaceX в 2014 году начала строительство собственного космодрома на юге штата Техас, недалеко от города Браунсвилл в районе населенного пункта Бока Чика. Его возведение обойдется примерно в $85 млн, ввод в строй ожидается в 2018 году.

Стоимость одного запуска ракеты составляет в среднем $60-65 млн (зависит от массы и объема выводимой полезной нагрузки). Примерно во столько же оценивается запуск «Протона-М» аналогичного класса (около $65 млн). Однако российская ракета - полностью одноразовая. SpaceX за счет повторного использования первой ступени Falcon 9 планирует сократить стоимость запуска примерно на 30%.

Впервые Falcon 9 стартовала 4 июня 2010 года с базы ВВС США на мысе Канаверал с прототипом корабля Dragon. В ходе второго запуска, 8 декабря того же года с мыса Канаверал, на орбиту был выведен полноценный Dragon (первый демонстрационный полет корабля).

Всего к 22 февраля 2018 года было произведено 48 запусков ракеты-носителя - 44 успешных, два неудачных и два частично неудачных. Из них 15 раз ракета Falcon 9 стартовала с кораблем Dragon (включая один аварийный запуск), один раз - с военным беспилотным космопланом X-37В.

Предыдущий запуск состоялся 1 февраля 2018 года с мыса Канаверал. Ракета вывела на орбиту телекоммуникационный спутник GovSat-1 компании SES (Люксембург).

Инциденты

Частично неудачными были два запуска ракеты с мыса Канаверал в 2012 и 2014 годах, сопровождавшиеся потерей попутного груза (основной задачей был вывод на околоземную орбиту корабля Dragon). 8 октября 2012 года из-за аварийной остановки одного из девяти двигателей первой ступени Falcon 9 был потерян спутник связи Orbcomm компании SpaceX (для запуска использовалась версия Falcon 9 v1.1). 18 апреля 2014 года не удалось развернуть на орбите 104 фемтоспутника (сверхмалые аппараты массой до 100 г) - они сгорели внутри блок-кассеты, в которой размещались.

ЧП помещало американской ракете стать рекордсменом по количеству одновременно запущенных космических аппаратов. Всего Falcon 9 v1.1 ® должна была вывести в космос 109 космических аппаратов: корабль Dragon, четыре малых аппарата и 104 фемтоспутника. В настоящее время мировой рекорд по количеству удачно выведенных одновременно на орбиту спутников принадлежит индийской ракете PSLV, с ее помощью 15 февраля 2017 года было запущено 104 аппарата (включая наноспутники).

Аварией завершился запуск 28 июня 2015 года. Стартовавшая с мыса Канаверал ракета Falcon 9 v1.1 ® взорвалась на 139-й секунде полета, еще до отделения первой ступени. В результате были потеряны корабль Dragon и 8 малых спутников Flock 1f. Обломки ракеты и космических аппаратов упали в Атлантический океан. К аварии привел разрыв одного из стальных стержней, удерживающих баллон со сжатым гелием внутри бака с жидким кислородом в верхней ступени ракеты (гелий необходим для поддержания высокого давления в баке). Оторвавшийся баллон «выстрелил» в направлении верхней части бака, что привело к взрыву. После установления причины аварийного запуска SpaceX заявила о внесении изменений в конструкцию ракеты.

Неудачным был запуск, проведенный 8 января 2018 года с мыса Канаверал. Ракета Falcon 9 FT должна была вывести в космос военный спутник под названием Zuma, но он не был обнаружен на околоземной орбите Стратегическим командованием ВВС США. Компания SpaceX заявила, что ракета отработала штатно. В конце января ВВС сняли претензии к SpaceX за неудачный запуск. Как выяснилось, к потере Zuma привела неисправность в системе отделения спутника от верхней ступени ракеты. За эту систему ответственна фирма Northrop Grumman, построившая космический аппарат по заказу властей.

Кроме того, 1 сентября 2016 года произошло ЧП на пусковой площадке SpaceX на мысе Канаверал во время предстартовых испытаний. За два дня до запланированного запуска при заправке топливом взорвалась Falcon 9 v1.2. Никто не пострадал. Ракета и установленный на ней израильский спутник связи Amos-6 были разрушены, также повреждения получила стартовая площадка (эксплуатация возобновилась в декабре 2017 года после проведенного ремонта). На время расследования инцидента запуски Falcon 9 были приостановлены и не проводились более четырех месяцев. Специалисты SpaceX пришли к выводу, что к взрыву привело повреждение одного из баллонов системы подачи гелия в резервуар с жидким кислородом на второй ступени ракеты.

Перспектива

В начале 2017 году в SpaceX заявляли, что компания имеет контракты более чем на 70 запусков Falcon 9 в ближайшие несколько лет. Их общая сумма не разглашается, но по оценкам экспертов, может достигать $10 млрд В частности, SpaceX имеет контракт с американской компанией-оператором спутниковой связи Iridium на запуск 75 новых космических аппаратов Iridium NEXT на общую сумму $492 млн (40 спутников уже были запущены в 2017 году). В перспективе ракета станет выводить в космос пилотируемую версию корабля Dragon v2, который будет использоваться для доставки экипажей на МКС.

На базе Falcon 9 компания создала сверхтяжелую ракету-носитель Falcon Heavy грузоподъемностью до 63,8 т, ее первый испытательный запуск был проведен 6 февраля 2018 года.

В сентябре 2017 года на Международном конгрессе по астронавтике в Аделаиде (Австралия) Маск представил проект многоразовой ракетно-космической системы (условное название - BFR, Big Falcon Rocket), которая впоследствии может заменить созданные в SpaceX ракеты Falcon 9, Falcon Heavy и корабль Dragon. Согласно планам компании, BFR будет универсальной и в разных версиях сможет использоваться для полетов на околоземную орбиту, миссий к Луне и Марсу, а также для сверхбыстрой перевозки пассажиров из одной точки Земли в другую (в пределах одного часа).

Разработка противокорабельной ракеты "Harpoon" ("Гарпун") велась фирмой "Макдонел Дуглас" с начала 1970-х гг. Проектно-конструкторские работы и летные испытания новой системы продолжались до лета 1978 года.

Попадание и затопление списанного авианосца ракетой "Гарпун" - видео

Противокорабельная ракета "Harpoon" производится в четырех основных вариантах:

Каждый из них имеет несколько моделей и модификаций. Модель RGM-84A считается базовой. Для различных зарубежных изданий характерны свои способы обозначения моделей и модификаций ракет "Гарпун". Например, могут равноправно применяться следующие варианты: RGM-84C1 или RGM-84 block 1C, RGM-84C block 1 и RGM 84C mod.1.

На вооружение надводных кораблей первые ракеты "Harpoon" RGМ-84 начали поступать в 1976 г. Авиационные ракеты АGМ-84 первыми получили патрульные самолеты Р-ЗС "Орион" в 1978 г. К середине 1990 г. в ВМС США ракетами "Harpoon" было оснащено более 210 надводных кораблей основных классов (линкоры, крейсера, эсминцы, фрегаты), около 65 % атомных подводных лодок, свыше 800 самолетов (Р-ЗС "Орион", А-6 "Интрудер", А-7 "Корсар", F/А-18"Хорнет", S-3 "Викинг"). Кроме того, в составе ВВС США две эскадрильи бомбардировщиков В-52С переоборудованы под носители противокорабельных ракет.

Состав
Ракета "Гарпун" построена по нормальной аэродинамической схеме, имеет модульную конструкцию и унифицированный корпус, складывающиеся крестообразное крыло и четыре руля. Крыло трапециевидное с большой стреловидностью по передней кромке, его складывающиеся консоли крепятся к корпусу топливного бака.

Пуск ПКР "Harpoon" оператор может осуществлять по пеленгу и дальности либо только по пеленгу на цель (если дальность неизвестна). В первом случае включение ГСН ракеты производится в момент, назначенный оператором перед пуском, в непосредственной близости от цели, что позволяет уменьшить вероятность обнаружения ПКР и время для возможного создания помех, В этом случае для поиска цели можно использовать малый, средний или большой сектор сканирования радиолокационной ГСН, Первый применяется при стрельбе по группе целей на малой дальности, однако в данном случае с увеличением дистанции эффективность действия ГСН снижается. При стрельбе на максимальную дальность применяется большой сектор сканирования. Для повышения эффективности стрельбы при поиске цели могут задействоваться несколько режимов сканирования, начиная с малого сектора. Если цель не обнаружена, то производится переход на больший сектор сканирования, и так головка самонаведения работает до того момента, пока не произойдет обнаружение и захват цели. ГСН не обладает селективными свойствами, поэтому ПКР поражает первую захваченную цель.

При стрельбе по пеленгу ГСН включается на установленном расстоянии с таким расчетом, чтобы не поразить какой-либо другой корабль. Когда производится атака групповой цели, предусмотрено разновременное включение головок самонаведения разных ракет, что позволяет миновать одни корабли и атаковать другие. В составе системы наведения существует индикатор движущейся цели, что делает маловероятным наведение на облако пассивных помех.
После выполнения стартовой горки ракета снижается до высоты 15 м над уровнем моря и далее совершает маршевый полет. Ракеты первых модификаций (RGM-84A и другие) при подходе к цели совершали горку, захватывали цель и пикировали на нее под углом примерно 30°. ПКР последующих модификаций такой маневр не выполняют, поскольку он не заложен в полетную программу, а атакуют цель, снижаясь до сверхмалых высот (2-5 м).

Еще в конце 70-х годов на смену базовой модели ПКР начали поступать ракеты RGM-84A1, отличающиеся более совершенной ГСН с повышенной помехозащищенностью. В течение трех лет ВМС Великобритании совместно с ВМС США финансировали работы по снижению высоты маршевого полета и изменению программного обеспечения, направленному на отказ от выполнения горки перед атакой цели. Начиная с 1982 года на вооружение стала поступать модификация ракеты (В1) с меньшей высотой полета на маршевом участке траектории. Последующая разработка ПКР (С1, 1984) имеет повышенную дальность стрельбы. Кроме того, у оператора появилась возможность перед пуском задать либо атаку цели на сверхмалых высотах (2-5 м), либо (при атаке малых кораблей) с выполнением малой горки (до 30 м).
Выпускавшиеся ранее модели ракет "Harpoon" (А1 и В1) фирма доработала, преобразовав их в новую модификацию (С1). Поставки этих ракет продолжались до середины 80-х годов.

С 1985 года появилась очередная модель ракеты "Гарпун" - RGM-84D. Первоначально она была создана для противокорабельного комплекса берегового базирования. Увеличение объема запоминающего устройства в 2 раза и усовершенствование программного обеспечения позволили ввести три опорные точки на траектории, в которых ПКР меняет направление полета, проходящего на малых высотах. Благодаря этому можно использовать ракету в закрытых акваториях и среди островов, скрывая истинное направление, с которого нанесен ракетный удар, что не только повышает скрытность носителей, но и обеспечивает проведение атаки на цель с разных направлений. На данной модели ПКР установлена более совершенная ГСН, имеющая более высокую помехозащищенность. Одновременно продолжались работы по созданию радиолокационной ГСН, использующей цифровые методы обработки сигналов, что способствует улучшению помехоустойчивости. Выпуск таких головок самонаведения начат в 1986 году.

В моделях ПКР (С и D) используется горючее повышенной энергоемкости (JP-10 вместо JP-5). При переходе на новое горючее не потребовалось внесения существенных изменений в конструкцию маршевой двигательной установки. Дальность полета увеличилась примерно на 20% (до 150 км). В последующих модификациях ракет предполагается применять это горючее, а выпущенные ранее ПКР будут переводиться на него в ходе специальных регламентных работ на фирме.
Развитие семейства ракет "Гарпун" шло и по пути улучшения программного обеспечения (модель D1). Такие ПКР поставлялись ВМС на экспорт.
При создании варианта ракеты (D2) было решено увеличить топливный бак на 0,6 м, и дальность полета ПКР "Harpoon" RGM-84D2 возрастет почти в 2 раза (до 280 км). Дальность действия увеличивается и за счет меньшего удельного расхода топлива ТРД.
Последней версией ракеты является AGM-84L блок-2, оснащенная боевой частью весом 224 кг. Она имеет диаметр 340 мм, длину - 4,6 м, дальность поражения целей - 130 км.

Ведутся работы по усовершенствованию радиолокационной ГСН. Она должна обеспечить автоматическую классификацию цели по демаскирующим признакам с определением важнейшего корабля среди группы или соединения, возможность повторного наведения на надводную цель, если ПКР промахнулась на первом заходе. Вместе с тем применение радиолокационной ГСН накладывает некоторые ограничения на боевое использование ракет. Так, при уменьшении ЭПР цели снижается дальность ее обнаружения и захвата, радиоизлучение ГСН уменьшает скрытность внезапной ракетной атаки, снижается эффективность стрельбы по надводным кораблям (судам) в базах и портах, а также по наземным целям, наличие ошибки в целеуказании или выход цели из пределов зоны действия ГСН ракеты не позволяют осуществлять перенацеливание ПКР из-за ее полной автономности.

В результате изучения опыта боевых действий командование ВМС США пришло к выводу о необходимости создания недорогой высокоточной телеуправляемой авиационной ракеты большой дальности действия с обычной боевой частью. Такая ракета (AGM-84E) разработана на основе ПКР "Гарпун" и совместима со всеми ее носителями, но предназначается главным образом для поражения кораблей в базах и портах и важных стационарных целей (заводов, электростанций, мостов). Эта модель отличается от предшествующих модулем головного отсека, в котором помещается аппаратура системы наведения. В ее состав входят тепловизионная головка самонаведения (от авиационной ракеты "Maverick" AGM-65f), подсистема передачи данных от управляемой авиационной бомбы "Уоллай" AGM-62A, одноканальный приемник спутниковой навигационной системы НАВСТАР с коррекцией инерциального блока наведения.

Данные о местонахождении цели вводятся в ЭВМ ракеты перед ее пуском. Полет на маршевом участке траектории осуществляется по данным от инерциального блока наведения с коррекцией от СНС НАВСТАР, что обеспечивает высокую точность выхода в заданный район. Включение тепловизионной ГСН производится аналогично предшествующим моделям ПКР. При этом происходит автоматическое включение подсистемы передачи данных с изображением зоны обзора головки самонаведения. Эти данные транслируются на носитель, где на видеотерминале оператор выбирает цель или точку прицеливания. Сопровождение ракеты заканчивается -после передачи этих данных в систему самонаведения ракеты, а затем тепловизионная ГСН работает автономно, захватывает и сопровождает цель, обеспечивая ее поражение.

Минимальная дальность стрельбы снижается за счет захвата цели еще до пуска ракеты. Существующая подсистема передачи данных (от УАБ "Уоллай") не отличается высокой помехоустойчивостью, поэтому специалисты ВВС США предполагают использовать аналогичную аппаратуру от управляемой авиабомбы AGM-130. Для проверки возможностей ракеты RGM-84E при пуске с надводных кораблей в начале текущего года проведены испытания. Палубный вертолет SH-60B системы ЛЭМПС МкЗ был оборудован видеотерминалом, обеспечивающим прием и обработку данных. Кроме того, изучается целесообразность применения вертолета в качестве ретранслятора данных о цели на надводный корабль, с которого производится запуск ракеты.

Пусковые установки.
Стрельбу ракетами "Гарпун" можно вести с различных пусковых установок. Для надводных кораблей и катеров была создана специальная легкая ПУ контейнерного типа Мк141 (см. фото). Она представляет собой алюминиевую раму, на которой под углом 35° могут размещаться до четырех транспортно-пусковых контейнеров из стеклопластика, рассчитанных на 15 пусков. Контейнеры герметичны, в них поддерживается стабильная температура. При хранении в них ракеты не нуждаются в дополнительных работах по техобслуживанию и всегда готовы к боевому применению.

Пуск ракеты "Harpoon" можно осуществлять также с пусковых установок Мк112 ("Asroc"), Мк11 и 13 ("Тартар"). При пуске из торпедного аппарата ПЛ ракета помещается в герметическую капсулу из стекловолокна и алюминиевого сплава. В ее хвостовой части размещены вертикальный киль и два складывающихся стабилизатора, обеспечивающих движение на подводном участке под углом около 45° к поверхности. После всплытия за счет положительной плавучести носовой обтекатель и хвостовой конус отстреливаются, и производится запуск стартового двигателя ракеты. Пуск ПКР с ПЛ может осуществляться с глубин около 60 м при любом состоянии моря. Типовой вариант загрузки американских ПЛА - до шести ракет "Harpoon", хотя их количество может варьироваться в зависимости от характера выполняемой задачи. На них применяются разные системы управления ракетной стрельбой (обычно Мк117, на некоторых лодках Мк113 мод. 10).

Авиационный вариант ракеты "Гарпун"

Авиационный вариант ракет "Гарпун" совместим с большинством боевых самолетов НАТО. Пуск может производиться на различных скоростях и высотах полета. После отделения от носителя обеспечивается стабилизация ракеты по крену и тангажу. Она снижается с углом пикирования около 33° до тех пор, пока не поступил сигнал от радиовысотомера о достижении заданной высоты. Затем автоматически запускается маршевый двигатель. При пуске ракет с самолетов Р-3 "Орион" и S-3 "Викинг", совершающих полеты на небольших высотах с малыми скоростями, запуск маршевого двигателя ПКР "Harpoon" осуществляется еще на пилоне. На самолетах используются специальные пусковые установки: AER065A1 (Р-3 "Орион"), MAU-9A/1 (S-3 "Викинг" и А-7Е "Корсар-2"), AERO-7А1 (А-6Е "Интрудер") и другие.

Береговой вариант противокорабельного ракетного комплекса "Harpoon" размещается на четырех тягачах. На двух находятся легкие ПУ контейнерного типа, а на двух других - запасные контейнеры с ракетами и приборы управления. Для транспортно-пусковых установок могут быть использованы самые разные автомобили, что упрощает комплектование батарей ПКРК. При этом допускается широкое варьирование оборудованием для связи, управления, обнаружения, разведки и целеуказания.

Приборы управления, находящиеся на носителе, согласно полученным данным о цели рассчитывают углы ориентации гироскопических приборов блока инерциального наведения и время включения ГСН. Кроме того, они обеспечивают подачу электропитания до момента активации батареи, вырабатывают боевой курс носителя, осуществляют предстартовую проверку и контроль, подают электрический сигнал для пуска ракеты.

При создании подсистемы обеспечения запуска учитывалось, что комплекс может быть установлен на различных носителях, а приборы управления должны обеспечивать взаимодействие между новыми модификациями ПКР и существующим пусковым оборудованием.

Для обеспечения целеуказания используются данные в аналоговой или цифровой форме, поступающие от воздушно-космических разведывательных систем, средств радиоразведки, РЛС, ГАС и других. Важная роль отводится вертолетам SH-60B, оснащенным обзорной РЛС и системой передачи данных. Они могут скрытно подлететь к цели на малой высоте и, совершив кратковременный набор высоты, произвести радиолокационное обнаружение. Аналогичные задачи способны выполнять беспилотные летательные аппараты, дирижабли и другие перспективные летательные аппараты.

Пусковые установки ПКР "Гарпун". Фрегат F18 Sutherland

Испытания и эксплуатация
Эффективность ракет была продемонстрирована во время испытательных пусков и в боевых условиях. По оценкам американских специалистов, для выведения из строя авианесущего корабля (легкого авианосца) потребуется попадание в него пяти ПКР "Harpoon", для поражения крейсера - четырех, а эсминца - двух; одна ракета способна произвести серьезные разрушения при попадании в небольшой корабль или катер.

В марте 1986 г. в заливе Сидра ракетами "Гарпун" были потоплены 2 ливийских ракетных катера. Так, 25 марта большой ливийский ракетный катер "Эйн Загут", патрулировавший побережье Ливии, был неожиданно обстрелян американским крейсером "Иорктаун" с дистанции всего 11 миль. Две ракеты "Harpoon" RGM-84 попали в катер, который через 15 минут затонул.

Второй ливийский катер "Воход" был потоплен 24 марта ракетой "Harpoon" АGМ-84, запущенной с американского штурмовика "Интрудер" А-6. Ракета попала в надстройку катера водоизмещением 311 т. Надстройка была уничтожена, в ней погиб и командир катера. Двигатели катера остались в строю, но команда решила не тушить возникший пожар. Через час после ухода экипажа катер затонул.
Еще через два года в Персидском заливе ракетами "Harpoon" были потоплены два иранских корабля.

В ходе операции "Буря в пустыне" (17.01.1991-01.03.1991) ПКР "Гарпун" применялись против ВМС Ирака по данным бортовых средств носителей по наведению внешних источников. Дистанции применения ракет не превышали 40 км в связи с трудностями обнаружения малоразмерных целей бортовыми РЛС. Отмечались случаи, когда ракета не могла снизиться настолько, чтобы попасть борт низкобортной малоразмерной цели и попадала в легкую надстройку. При этом боевая часть ракеты взрывалась уже после пролета цели и эффективность огневого воздействия, таким образом, снижалась. В это же время выявленные боевые эпизоды, связанные с применением ПКР "Harpoon", свидетельствуют о том, что эффективность бортовой системы наведения ракеты на цель на конечном участке была исключительно высокой.



Loading...Loading...