Почему модель хищник жертва является не точной. Курсовая работа: Качественное исследование модели хищник-жертва

Еще в 20-х гг. А. Лотка, а несколько позднее независимо от него В.Вольтера предложили математические модели, описывающие сопряженные колебания численности хищника и жертвы.

Модель состоит из двух компонентов:

С – численность хищников; N – численность жертв;

Предположим, что в отсутствии хищников популяция жертвы будет расти экспоненциально: dN/dt = rN. Но жертвы уничтожаются хищниками со скоростью, которая определяется частотой встреч хищника с жертвой, а частота встреч возрастает по мере увеличения численности хищника (С) и жертвы (N). Точное число встреченных и успешно съеденных жертв будет зависеть от эффективности, с которой хищник находит и ловит жертву, т.е. от а’ – «эффективности поиска» или «частоты нападений». Т.о., частота «успешных» встреч хищника с жертвой и, следовательно, скорость поедания жертв будет равна а’СN и в целом: dN/dt = rN – a’CN (1*).

В отсутствии пищи отдельные особи хищника теряют в весе, голодают и гибнут. Предположим, что в рассматриваемой модели численность популяции хищника в отсутствии пищи вследствие голодания будет уменьшаться экспоненциально: dC/dt = - qC, где q – смертность. Гибель компенсируется рождением новых особей со скоростью, которая, как полагают в этой модели, зависит от двух обстоятельств:

1) скорости потребления пищи, a’CN;

2)эффективности (f), с которой эта пища переходит в потомство хищника.

Т.о., рождаемость хищника равна fa’CN и в целом: dC/dt = fa’CN – qC (2*). Уравнения 1* и 2* составляют модель Лотки-Вольтера. Свойства этой модели можно исследовать, построить изоклины линии, соответствующие постоянной численности популяции, с помощью таких изоклин определяют поведение взаимодействующих популяций хищник-жертва.

В случае с популяцией жертвы: dN/dt = 0, rN = a’CN, или C = r/a’. Т.к. r и a’ = const, изоклиной для жертвы будет линия, для которой величина С является постоянной:

При низкой плотности хищника (С), численность жертвы (N) возрастает, наоборот – снижается.

Точно также для хищников (уравнение 2*) при dC/dt = 0, fa’CN = qC, или N = q/fa’, т.е. изоклиной для хищника будет линия, вдоль которой N постоянна: При высокой плотности жертвы, численность популяции хищника растет, а при низкой – снижается.

Их численность претерпевает неограниченные сопряженные колебания. Когда велико число жертв, численность хищников растет, что приводит к увеличению пресса хищников на популяцию жертвы и тем самым к уменьшению ее численности. Это снижение в свою очередь ведет к ограничению хищников в пище и падению их численности, которая вызывает ослабление пресса хищников и увеличение численности жертвы, что снова приводит к росту популяции хищников и т.д.


Популяции неограниченно долго совершают один и тот же цикл колебаний до тех пор, пока какое-либо внешнее воздействие не изменит их численность, после чего популяции совершают новые циклы неограниченных колебаний. На самом деле среда постоянно меняется, и численность популяций будет постоянно смещаться на новый уровень. Чтобы циклы колебаний, которые совершает популяция, были регулярными, они должны быть стабильными: если внешнее воздействие изменяет уровень численности популяций, то они должны стремиться к первоначальному циклу. Такие циклы называются устойчивыми, предельными циклами.

Модель Лотки-Вольтера позволяет показать основную тенденцию в отношениях хищник-жертва, которая выражается в возникновении колебаний численности в популяции жертвы, сопровождающихся колебаниями численности в популяции хищника. Основным механизмом таких колебаний является запаздывание во времени, свойственное последовательности состояния от высокой численности жертв к высокой численности хищников, затем к низкой численности жертв и низкой численности хищников, к высокой численности жертв и т.д.

5) ПОПУЛЯЦИОННЫЕ СТРАТЕГИИ ХИЩНИКА И ЖЕРТВЫ

Взаимоотношения «хищник - жертва» представляют звенья процесса передачи вещества и энергии от фитофагов к зоофагам или от хищников низшего порядка к хищникам высшего порядка. По характеру этих отношений различают три варианта хищников :

а) собиратели . Хищник собирает мелких достаточно многочисленных подвижных жертв. Такой вариант хищничества характерен для многих видов птиц (ржанок, зябликов, коньков и др.), которые затрачивают энергию только на поиск жертв;

б) истинные хищники . Хищник преследует и убивает жертву;

в) пастбищники . Эти хищники используют жертву многократно, например, оводы или слепни.

Стратегия добывания пищи у хищников направлена на обеспечение энергетической эффективности питания: затраты энергии на добывание пищи должны быть меньше энергии, получаемой при ее усвоении.

Истинные хищники делятся на

«жнецов», которые питаются обильными ресурсами (н, планктонные рыбы и даже усатый кит), и «охотников», которые добывают менее обильный корм. В свою очередь

«охотники» делятся на «засадников», подстерегающих добычу (например, щука, ястреб, кошка, жук- богомол), «искателей» (насекомоядные птицы) и «преследователей». Для последней группы поиск пищи не требует больших затрат энергии, но ее нужно много, чтобы овладеть жертвой (львы в саваннах). Впрочем, некоторые хищники могут сочетать элементы стратегии разных вариантов охоты.

Как и при отношениях «фитофаг - растение», ситуация, при которой все жертвы будут съедены хищниками, что в конечном итоге приведет и к их гибели, в природе не наблюдается. Экологическое равновесие между хищниками и жертвами поддерживается специальными механизмами , снижающими риск полного истребления жертв. Так, жертвы могут :

Убегать от хищника. В этом случае в результате адаптаций повышается подвижность и жертв, и хищников, что особенно характерно для степных животных, которым негде прятаться от преследователей;

Приобретать защитную окраску («притворяться» листьями или сучками) или, напротив, яркий цвет, Н.: красный, предупреждающий хищника о горьком вкусе. Общеизвестно изменение окраски зайца в разные времена года, что позволяет ему маскироваться летом в траве, а зимой на фоне белого снега. Адаптивное изменение окраски может происходить в разных стадиях онтогенеза: детеныши тюленей белые (цвет снега), а взрослые особи черные (цвет скалистого побережья);

Распространяться группами, что делает их поиск и промысел для хищника более энергоемким;

Прятаться в укрытия;

Переходить к мерам активной обороны (травоядные, имеющие рога, колючие рыбы), иногда совместной (овцебыки могут занимать «круговую оборону» от волков и т.д.).

В свою очередь хищники развивают не только способность к быстрому преследованию жертв, но и обоняние, позволяющее по запаху определить место нахождения жертвы. Многие виды хищников разрывают норы своих жертв (лисы, волки).

В то же время сами они делают все возможное для того, чтобы не обнаружить своего присутствия. Этим объясняется чистоплотность мелких кошачьих, которые для устранения запаха много времени тратят на туалет и закапывают экскременты. Хищники одевают «маскировочные халаты» (полосатость щук и окуней, делающих их менее заметными в зарослях макрофитов, полосатость тигров и т.д.).

Полной защиты от хищников всех особей в популяциях животных-жертв также не происходит, так как это привело бы не только к гибели голодающих хищников, но в конечном итоге - к катастрофе популяций жертв. В то же время при отсутствии или снижении плотности популяции хищников ухудшается генофонд популяции жертв (сохраняются больные и старые животные) и ввиду резкого увеличения их численности подрывается кормовая база.

По этой причине эффект зависимости численности популяций жертв и хищников - пульсация численности популяции жертвы, за которой с некоторым запаздыванием пульсирует численность популяции хищника («эффект Лотки - Вольтерры») - наблюдается редко.

Между биомассами хищников и жертв устанавливается достаточно устойчивое соотношение. Так, Р. Риклефс приводит данные о том, что соотношение биомасс хищника и жертвы колеблется в пределах 1:150 - 1:300. В разных экосистемах умеренной зоны США на одного волка приходится 300 мелких белохвостых оленей (вес 60 кг), 100 крупных оленей вапити (вес 300 кг) или 30 лосей (вес 350). Такая же закономерность выявлена в саваннах.

При интенсивной эксплуатации популяций фитофагов человек нередко исключает из экосистем хищников (в Великобритании, к примеру, есть косули и олени, но нет волков; в искусственных водоемах, где разводят карпа и другую прудовую рыбу, нет щук). В этом случае роль хищника выполняет сам человек, изымая часть особей популяции фитофага.

Особый вариант хищничества наблюдается у растений и грибов. В царстве растений встречается порядка 500 видов, способных ловить насекомых и частично их переваривать с помощью протеолитических ферментов. Хищные грибы образуют ловчие аппараты в виде маленьких овальных или шаровидных головок, расположенных на коротких веточках мицелия. Однако самый распространенный вид ловушки - клейкие трехмерные сети, состоящие из большого числа колец, образующихся в результате ветвления гиф. Хищные грибы могут ловить достаточно крупных животных, например, круглых червей. После того, как червь запутается в гифах, они прорастают внутрь тела животного и быстро его заполняют.

1.Постоянный и благоприятный уровень температуры и влажности.

2.Обилие пищи.

3.Защита от неблагоприятных факторов.

4.Агрессивный химический состав среды обитания (пищеварительные соки).

1.Наличие двух сред обитания: среда первого порядка - организм хозяина, среда второго порядка - внешняя среда.

Приспособления, вырабатываемые жертвами для противодействия хищникам , способствуют выработке у хищников механизмов преодоления этих приспособлений. Длительное совместное существование хищников и жертв приводит к формированию системы взаимодействия, при которой обе группы устойчиво сохраняются на изучаемой территории. Нарушение такой системы часто приводит к отрицательным экологическим последствиям.

Негативное влияние нарушения коэволюционных связей наблюдается при интродукции видов. В частности, козы и кролики , интродуцированные в Австралии , не имеют на этом материке эффективных механизмов регуляции численности, что приводит к разрушению природных экосистем .

Математическая модель

Допустим, что на некоторой территории обитают два вида животных : кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x, число лис y. Используя Модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерры - Лотки :

\begin{cases} \dot x=(\alpha -c y)x;\\

\dot y=(-\beta+d x) y. \end{cases}

Поведение модели

Групповой образ жизни хищников и их жертв радикально меняет поведение модели, придает ей повышенную устойчивость.

Обоснование: при групповом образе жизни снижается частота случайных встреч хищников с потенциальными жертвами, что подтверждается наблюдениями за динамикой численности львов и антилоп гну в парке Серенгети .

История

Модель совместного существования двух биологических видов (популяций) типа «хищник - жертва» называется также моделью Вольтерры - Лотки.

См. также

Напишите отзыв о статье "Система «хищник - жертва»"

Примечания

Литература

  • В. Вольтерра, Математическая теория борьбы за существование. Пер. с франц. О. Н. Бондаренко. Под ред и послесловием Ю. М. Свирежева. М.: Наука, 1976. 287 c. ISBN 5-93972-312-8
  • А. Д. Базыкин, Математическая биофизика взаимодействующих популяций. М.: Наука, 1985. 181 с.
  • А. Д. Базыкин, Ю. А. Кузнецов, А. И. Хибник, Портреты бифуркаций (Бифуркационные диаграммы- динамических систем на плоскости) /Серия «Новое в жизни, науке, технике. Математика, кибернетика» - М.: Знание, 1989. 48 с.
  • П. В. Турчин,

Ссылки

Отрывок, характеризующий Система «хищник - жертва»

– Charmant, charmant, [Прелестно, прелестно,] – сказал князь Василий.
– C"est la route de Varsovie peut etre, [Это варшавская дорога, может быть.] – громко и неожиданно сказал князь Ипполит. Все оглянулись на него, не понимая того, что он хотел сказать этим. Князь Ипполит тоже с веселым удивлением оглядывался вокруг себя. Он так же, как и другие, не понимал того, что значили сказанные им слова. Он во время своей дипломатической карьеры не раз замечал, что таким образом сказанные вдруг слова оказывались очень остроумны, и он на всякий случай сказал эти слова, первые пришедшие ему на язык. «Может, выйдет очень хорошо, – думал он, – а ежели не выйдет, они там сумеют это устроить». Действительно, в то время как воцарилось неловкое молчание, вошло то недостаточно патриотическое лицо, которого ждала для обращения Анна Павловна, и она, улыбаясь и погрозив пальцем Ипполиту, пригласила князя Василия к столу, и, поднося ему две свечи и рукопись, попросила его начать. Все замолкло.
– Всемилостивейший государь император! – строго провозгласил князь Василий и оглянул публику, как будто спрашивая, не имеет ли кто сказать что нибудь против этого. Но никто ничего не сказал. – «Первопрестольный град Москва, Новый Иерусалим, приемлет Христа своего, – вдруг ударил он на слове своего, – яко мать во объятия усердных сынов своих, и сквозь возникающую мглу, провидя блистательную славу твоея державы, поет в восторге: «Осанна, благословен грядый!» – Князь Василий плачущим голосом произнес эти последние слова.
Билибин рассматривал внимательно свои ногти, и многие, видимо, робели, как бы спрашивая, в чем же они виноваты? Анна Павловна шепотом повторяла уже вперед, как старушка молитву причастия: «Пусть дерзкий и наглый Голиаф…» – прошептала она.
Князь Василий продолжал:
– «Пусть дерзкий и наглый Голиаф от пределов Франции обносит на краях России смертоносные ужасы; кроткая вера, сия праща российского Давида, сразит внезапно главу кровожаждущей его гордыни. Се образ преподобного Сергия, древнего ревнителя о благе нашего отечества, приносится вашему императорскому величеству. Болезную, что слабеющие мои силы препятствуют мне насладиться любезнейшим вашим лицезрением. Теплые воссылаю к небесам молитвы, да всесильный возвеличит род правых и исполнит во благих желания вашего величества».
– Quelle force! Quel style! [Какая сила! Какой слог!] – послышались похвалы чтецу и сочинителю. Воодушевленные этой речью, гости Анны Павловны долго еще говорили о положении отечества и делали различные предположения об исходе сражения, которое на днях должно было быть дано.
– Vous verrez, [Вы увидите.] – сказала Анна Павловна, – что завтра, в день рождения государя, мы получим известие. У меня есть хорошее предчувствие.

Предчувствие Анны Павловны действительно оправдалось. На другой день, во время молебствия во дворце по случаю дня рождения государя, князь Волконский был вызван из церкви и получил конверт от князя Кутузова. Это было донесение Кутузова, писанное в день сражения из Татариновой. Кутузов писал, что русские не отступили ни на шаг, что французы потеряли гораздо более нашего, что он доносит второпях с поля сражения, не успев еще собрать последних сведений. Стало быть, это была победа. И тотчас же, не выходя из храма, была воздана творцу благодарность за его помощь и за победу.
Предчувствие Анны Павловны оправдалось, и в городе все утро царствовало радостно праздничное настроение духа. Все признавали победу совершенною, и некоторые уже говорили о пленении самого Наполеона, о низложении его и избрании новой главы для Франции.
Вдали от дела и среди условий придворной жизни весьма трудно, чтобы события отражались во всей их полноте и силе. Невольно события общие группируются около одного какого нибудь частного случая. Так теперь главная радость придворных заключалась столько же в том, что мы победили, сколько и в том, что известие об этой победе пришлось именно в день рождения государя. Это было как удавшийся сюрприз. В известии Кутузова сказано было тоже о потерях русских, и в числе их названы Тучков, Багратион, Кутайсов. Тоже и печальная сторона события невольно в здешнем, петербургском мире сгруппировалась около одного события – смерти Кутайсова. Его все знали, государь любил его, он был молод и интересен. В этот день все встречались с словами:
– Как удивительно случилось. В самый молебен. А какая потеря Кутайсов! Ах, как жаль!
– Что я вам говорил про Кутузова? – говорил теперь князь Василий с гордостью пророка. – Я говорил всегда, что он один способен победить Наполеона.
Но на другой день не получалось известия из армии, и общий голос стал тревожен. Придворные страдали за страдания неизвестности, в которой находился государь.
– Каково положение государя! – говорили придворные и уже не превозносили, как третьего дня, а теперь осуждали Кутузова, бывшего причиной беспокойства государя. Князь Василий в этот день уже не хвастался более своим protege Кутузовым, а хранил молчание, когда речь заходила о главнокомандующем. Кроме того, к вечеру этого дня как будто все соединилось для того, чтобы повергнуть в тревогу и беспокойство петербургских жителей: присоединилась еще одна страшная новость. Графиня Елена Безухова скоропостижно умерла от этой страшной болезни, которую так приятно было выговаривать. Официально в больших обществах все говорили, что графиня Безухова умерла от страшного припадка angine pectorale [грудной ангины], но в интимных кружках рассказывали подробности о том, как le medecin intime de la Reine d"Espagne [лейб медик королевы испанской] предписал Элен небольшие дозы какого то лекарства для произведения известного действия; но как Элен, мучимая тем, что старый граф подозревал ее, и тем, что муж, которому она писала (этот несчастный развратный Пьер), не отвечал ей, вдруг приняла огромную дозу выписанного ей лекарства и умерла в мучениях, прежде чем могли подать помощь. Рассказывали, что князь Василий и старый граф взялись было за итальянца; но итальянец показал такие записки от несчастной покойницы, что его тотчас же отпустили.

Хищники могут поедать травоядных животных, и также слабых хищников. Хищники обладают широким спектром питания, легко переключаются с одной добычи на другую, более доступную. Хищники часто нападают на слабые жертвы. Поддерживается экологическое равновесие между популяциями жертва-хищник.[ ...]

Если равновесие неустойчиво (предельных циклов нет) или внешний цикл неустойчив, то численности обоих видов, испытывая сильные колебания, уходят из окрестности равновесия. Причем быстрое вырождение (в первой ситуации) наступает при низкой адаптации хищника, т.е. при его высокой смертности (по сравнению со скоростью размножения жертвы). Это означает, что слабый во всех отношениях хищник не способствует стабилизации системы и сам вымирает.[ ...]

Пресс хищников особенно силен, когда в коэволюции хищник - жертва равновесие смещается в сторону хищника и ареал жертвы сужается. Конкурентная борьба тесно связана с нехваткой пищевых ресурсов, она может быть и прямой борьбой, например, хищников за пространство как ресурс, но чаще всего это просто вытеснение вида, которому на данной территории пищи не хватает, видом, которому этого же количества пищи вполне достаточно. Это уже межвидовая конкуренция.[ ...]

И окончательно в системе ’’хищник - жертва”, описываемой моделью (2.7), возникновение диффузионной неустойчивости (при локальной устойчивости равновесия) возможно лишь в том случае, когда естественная смертность хищника возрастает с ростом его численности быстрее, чем линейная функция, и трофическая функция отличается от вольтерровской либо, когда популяция жертвы - это популяция типа Олли.[ ...]

Теоретически в моделях «один хищник - две жертвы» эквивалентное выедание (отсутствие предпочтения того или иного вида жертвы) может повлиять на конкурентное сосуществование видов-жертв лишь в тех местах, где уже существует потенциально устойчивое равновесие . Разнообразие может возрасти только в таких условиях, когда у видов с меньшей конкурентоспособностью скорость роста популяции выше, чем у доминантов. Это позволяет понять ситуацию, когда равномерное выедание ведет к увеличению видового разнообразия растений там, где большее число видов, прошедших отбор на быстрое размножение, сосуществует с видами, эволюция которых направлена на повышение конкурентоспособности .[ ...]

Точно так же выбор жертвы, зависящий от ее плотности, может привести к устойчивому равновесию в теоретических моделях двух конкурирующих видов жертвы, где прежде никакого равновесия не существовало . Для этого хищник должен был бы обладать способностью к функциональным и численным реакциям на изменения плотности жертвы; возможно, однако, что переключение (непропорционально частые нападения на наиболее обильную жертву) будет иметь при этом более важное значение. В самом деле, установлено, что переключение оказывает стабилизирующее влияние в системах «один хищник - п жертв» и представляет собой единственный механизм, способный стабилизировать взаимодействия в тех случаях, когда ниши жертв полностью перекрываются . Такую роль могут играть неспециализированные хищники. Предпочтение более специализированными хищниками доминантного конкурента действует таким же образом, как переключение хищника, и может стабилизировать теоретические взаимодействия в моделях, в которых прежде не существовало равновесия между видами жертвы, при условии что их ниши в какой-то степени разделены .[ ...]

Также- не стабилизирует сообщество и хищник ’’сильный во всех отношениях”, т.е. хорошо адаптированный к данной жертве и с низкой относительной смертностью. При этом система обладает неустойчивым предельным циклом и, несмотря на устойчивость положения равновесия, вырождается в случайной среде (хищник выедает жертву и вследствие этого гибнет). Такая ситуация соответствует медленному вырождению.[ ...]

Таким образом, при хорошей адаптации хищника в окрестности устойчивого равновесия могут возникать неустойчивый и устойчивый циклы, т.е. в зависимости от начальных условий система ’’хищник-жертва” либо стремится к равновесию, либо, колеблясь, уходит от него, либо в окрестности равновесия устанавливаются устойчивые колебания численностей обоих видов.[ ...]

Организмы, которых относят к хищникам, питаются другими организмами, уничтожая свою жертву. Таким образом, среди живых организмов следует выделять еще одну классификационную систему, а именно «хищники» и «жертвы». Отношения между такими организмами складывались на протяжении всей эволюции жизни на нашей планете. Организмы-хищники выступают в роли природных регуляторов численности организмов-жертв. Увеличение численности «хищников» приводит к уменьшению численности «жертв», это, в свою очередь, снижает запасы пищи («жертв») для «хищников», что в целом диктует снижение численности «жертв» и т. д. Таким образом, в биоценозе постоянно происходят колебания численности хищников и жертв, в целом же устанавливается определенное равновесие на какой-то период времени в пределах достаточно устойчивых условий среды.[ ...]

Это в конечном итоге приходит к экологическому равновесию между популяциями хищника и жертвы.[ ...]

Для трофической функции третьего типа состояние равновесия будет устойчивым, если где N - точка перегиба функции (см. рис. 2, в). Это следует из того, что на интервале трофическая функция вогнута и, следовательно, относительная доля потребления хищником жертвы возрастает.[ ...]

Пусть Гг = -Г, т.е. имеет место сообщества типа ’’хищник - жертва”. В этом случае первое слагаемое в выражении (7.4) равно нулю и для выполнения условия устойчивости по вероятности равновесного состояния N требуется, чтобы и второе слагаемое не было положительным.[ ...]

Таким образом, для рассмотренного сообщества типа хищник - жертва можно сделать вывод об асимптотической устойчивости в целом положительного положения равновесия, т. е. для любых начальных данных 1Ч(0)>0 эволюция происходит таким образом, что N(7) - ■ К при условии, что N >0.[ ...]

Так, в однородной среде, не имеющей укрытий для размножения, хищник рано или поздно уничтожает популяцию жертвы и после этого вымирает сам. Волны жизни” (изменений численности хищника и жертвы) следуют друг за другом с постоянным сдвигом по фазе, и в среднем численность как хищника, так и жертвы остается примерно на одном уровне. Длительность периода зависит от скоростей роста обоих видов и от исходных параметров. Для популяции жертвы влияние хищника положительно, так как ее чрезмерное размножение привело бы к краху ее численности. В свою очередь, все механизмы, препятствующие полному истреблению жертвы, способствуют сохранению пищевой базы хищника.[ ...]

Другие модификации могут быть следствием особенностей поведения хищника. Число особей жертвы, которое хищник в состоянии потребить в данное время, имеет свой предел. Эффект насыщения хищника при приближении к этому рубежу показан в табл. 2-4, В. Взаимодействия, описываемые уравнениями 5 и 6, могут иметь устойчивые точки равновесия или обнаруживать циклические колебания. Однако такие циклы отличаются от тех, какие отражены в уравнениях Лотки - Вольтерры 1 и 2. Циклы, передаваемые уравнениями 5 и 6, могут иметь постоянную амплитуду и средние плотности, пока среда постоянна; после того как произошло нарушение, они могут вернуться к прежним амплитудам и средним плотностям. Такие циклы, которые восстанавливаются после нарушений, называются устойчивыми предельными циклами. Взаимодействие зайца и рыси можно считать устойчивым предельным циклом, но это не цикл Лотки - Вольтерры.[ ...]

Рассмотрим возникновение диффузионной неустойчивости в системе ’’хищник -жертва”, но сначапа выпишем условия, обеспечивающие возникновение диффузионной неустойчивости в системе (1.1) при п = 2. Ясно, что равновесие (N , Щ) локально (т.е.[ ...]

Перейдем к интерпретации случаев, связанных с длительным сосуществованием хищника и жертвы. Понятно, что в отсутствие предельных циклов устойчивому равновесию будут соответствовать в случайной среде флуктуации численности, причем их амплитуда будет пропорциональна дисперсии возмущений. Такое явление будет происходить, если хищник имеет высокую относительную смертность и в то же время высокую степень приспособленности к данной жертве.[ ...]

Рассмотрим теперь, как меняется динамика системы с ростом приспособленности хищника, т.е. с убыванием Ъ от 1 до 0. Если приспособленность достаточно низкая, то предельные циклы отсутствуют, а равновесие является неустойчивым. С ростом приспособленности в окрестности этого равновесия возможно появление устойчивого цикла и далее внешнего неустойчивого. В зависимости от начальных условий (соотношения биомассы хищника и жертвы) система может либо терять устойчивость, т.е. уходить из окрестности равновесия, либо в ней будут со временем устанавливаться устойчивые колебания. Дальнейший рост приспособленности делает невозможным колебательный характер поведения системы. Однако при Ъ [ ...]

Пример отрицательной (стабилизирующей) обратной связи - взаимоотношение между хищником и жертвой или функционирование карбонатной системы океана (раствор СОг в воде: СО2 + Н2О -> Н2СОз). Обычно количество углекислоты, растворенное в воде океана, находится в парциальном равновесии с концентрацией углекислого газа в атмосфере. Локальные увеличения углекислоты в атмосфере после извержения вулканов приводят к интенсификации фотосинтеза и поглощению ее карбонатной системой океана. При снижении уровня углекислого газа в атмосфере карбонатная система океана высвобождает СОг в атмосферу. Поэтому концентрация углекислого газа в атмосфере достаточно стабильна.[ ...]

[ ...]

Как отмечает Р.Риклефс (1979), существуют факторы, способствующие стабилизации взаимоотношений в системе “хищник-жертва”: неэффективность хищника, наличие у хищника альтернативных пищевых ресурсов, уменьшение запаздывания в реакции хищника, а также экологические ограничения, налагаемые внешней средой на ту или иную популяцию. Взаимодействия между популяциями хищника и жертвы весьма разнообразны и сложны. Так, если хищники достаточно эффективны, они могут регулировать плотность популяции жертвы, удерживая ее на уровне ниже емкости среды. Через влияние, оказываемое ими на популяции жертвы, хищники воздействуют на эволюцию различных признаков жертвы, что приводит в конечном итоге к экологическому равновесию между популяциями хищника и жертвы.[ ...]

Если выполняется одно из условий: 0 1/2. Если же 6 > 1 (кА [ ...]

Устойчивость биоты и окружающей среды зависит только от взаимодействия растений - автотрофов и растительноядных гетеротрофных организмов. Хищники любых размеров не способны нарушить экологическое равновесие сообщества, так как в естественных условиях они не могут увеличить свою численность при постоянной численности жертв. Хищники не только должны быть сами передвигающимися, но и могут питаться только передвигающимися животными.[ ...]

Никакие другие рыбы не распространены так широко, как щуки. В немногих местах товли в стоячих или проточных водоемах нет давления со стороны щук для сохранения равновесия между жертвой и хищником Только современные искусственные водоемы, в которых щуки являются рыбами нежелательными из-за разведения там других рыб, не заселяются ими целенаправленно. В мире щуки исключительно хорошо представлены. Их ловят по всему северном) полушарию от Соединенных Штатов и Канады в Северной Америке, через Европу до северной части Азии.[ ...]

Еще одна возможность устойчивого сосуществования возникает здесь же, в узком диапазоне сравнительно высокой адаптации. При переходе к неустойчивому режиму с очень ’’хорошим” хищником может возникнуть устойчивый внешний предельный цикл, при котором диссипация биомассы уравновешивается ее притоком в систему (высокой продуктивностью жертвы). Тогда возникает любопытная ситуация, когда наиболее вероятными являются два характерных значения амплитуды случайных колебаний. Одни происходят вблизи равновесия, другие - вблизи предельного цикла, причем возможны более или менее частые переходы между этими режимами.[ ...]

Гипотетические популяции, которые ведут себя в соответствии с векторами на рис. 10.11 А, изображены на рис. 10.11,-Б с помощью графика, показывающего динамику соотношения численностей хищника и жертвы и на рис. 10.11,5 в виде графика динамики численности хищника и жертвы во времени. В популяции жертвы, по мере того как она переходит от равновесия прн низкой плотности к равновесию при высокой и возвращается назад, происходит «вспышка» численности. И эта вспышка численности не является следствием столь же выраженного изменения в окружающей среде. Напротив, это изменение численности порождено самим воздействием (при небольшом уровне «шума» в среде) и оно, в частности, отражает существование нескольких равновесных состояний. Сходные рассуждения можно использовать для объяснения более сложных случаев динамики численности в природных популяциях.[ ...]

Важнейшим свойством экосистемы является ее устойчивость, сбалансированность обмена и происходящих в ней процессов. Способность популяций или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды называется гомеостазом (homoios - тот же, подобный; stasis - состояние). В основе гомеостаза лежит принцип обратной связи. Для поддержания равновесия в природе не требуется внешнего управления. Пример гомеостаза - субсистема «хищник-жертва», в которой регулируются плотность популяций хищника и жертвы.[ ...]

Природная экосистема (биогеоценоз) устойчиво функционирует при постоянном взаимодействии ее элементов, круговороте веществ, передаче химической, энергетической, генетической и другой энергии и информации по цепям-каналам. Согласно принципу равновесия любая естественная система с проходящим через нее потоком энергии и информации имеет тенденцию к развитию устойчивого состояния. При этом устойчивость экосистем обеспечивается автоматически за счет механизма обратной связи. Обратная связь заключается в использовании получаемых данных от управляемых компонентов экосистем для внесения корректив управляющими компонентами в процесс. Рассмотренные выше взаимоотношения «хищник» - «жертва» в данном контексте можно описать несколько подробнее; так, в водной экосистеме хищные рыбы (щука в пруду) поедают другие виды рыб-жертвы (карась); если численность карася будет увеличиваться -это пример положительной обратной связи; щука, питаясь карасем, снижает его численность-это пример отрицательной обратной связи; при росте числа хищников снижается число жертв, и хищник, испытывая недостаток пищи, также снижает рост своей популяции; в конце концов в рассматриваемом пруду устанавливается динамическое равновесие в численности и щуки, и карася. Постоянно поддерживается равновесие, которое исключало бы исчезновение любого звена трофической цепи (рис. 64).[ ...]

Переходим к наиболее важному обобщению, а именно что отрицательные взаимодействия со временем становятся менее заметными, если экосистема достаточно стабильна и ее пространственная структура обеспечивает возможность взаимного приспособления популяций. В модельных системах типа хищник- жертва, описываемых уравнением Лотки-Вольтерры, если в уравнение не введены дополнительные члены, характеризующие действие факторов самоограничения численности, то колебания происходят непрерывно и не затухают (см. Левонтин, 1969). Пиментел (1968; см. также Пиментел и Стоун, 1968) экспериментально показал, что такие дополнительные члены могут отражать взаимные адаптации или генетическую обратную связь. Когда же новые культуры создавали из особей, ранее на протяжении двух лет совместно существовавших в культуре, где их численность подвергалась значительным колебаниям, оказалось, что у них выработался экологический гомеостаз, при котором каждая из популяций была «подавлена» другой в такой степени, что оказалось возможным их сосуществование при более стабильном равновесии.

Часто представители одного вида (популяции) питаются представителями другого вида.

Модель Лотки – Вольтерры – модель взаимного существования двух популяций типа «хищник – жертва».

Впервые модель «хищник – жертва» была получена А. Лоткой в 1925 году, который использовал ее для описания динамики взаимодействующих биологических популяций. В 1926 году независимо от Лотки аналогичные (к тому же более сложные) модели были разработаны итальянским математиком В. Вольтерра, глубокие исследования которого в области экологических проблем заложили фундамент математической теории биологических сообществ или т. н. математической экологии.

В математической форме предложенная система уравнений имеет вид:

где x – количество жертв, y – количество хищников, t – время, α, β, γ, δ – коэффициенты, которые отражают взаимодействия между популяциями.

Постановка задачи

Рассмотрим закрытое пространство, в котором существуют две популяции – травоядные («жертвы») и хищники. Считается, что животных не ввозят и не вывозят и что еды для травоядных животных достаточно. Тогда уравнение изменения числа жертв (только жертв) примет вид:

где $α$ – коэффициент рождаемости жертв,

$x$– размер популяции жертв,

$\frac{dx}{dt}$ – скорость прироста популяции жертв.

Когда хищники не охотятся, они могут вымирать, значит, уравнение для количества хищников (только хищников) примет вид:

Где $γ$ – коэффициент убыли хищников,

$y$ – размер популяции хищников,

$\frac{dy}{dt}$ – скорость прироста популяции хищников.

При встрече хищников и жертв (частота встреч прямо пропорциональна произведению) хищники уничтожают жертв с коэффициентом, сытые хищники могут воспроизводить потомство с коэффициентом. Таким образом, система уравнений модели примет вид:

Решение задачи

Построим математическую модель совместного существования двух биологических популяций типа «хищник – жертва».

Пусть две биологические популяции совместно обитают в изолированной среде. Среда является стационарной и обеспечивает в неограниченном количестве всем необходимым для жизни один из видов – жертвы. Другой вид – хищник – также обитает в стационарных условиях, но питается только жертвами. В роли хищников могут выступать коты, волки, щуки, лисы, а в роли жертв – куры, зайцы, караси, мыши соответственно.

Для определенности рассмотрим в роли хищников – котов, а в роли жертв – кур.

Итак, куры и коты живут в некотором изолированном пространстве – хозяйственном дворе. Среда предоставляет курам питание в неограниченном количестве, а коты питаются только курами. Обозначим через

$х$ – количество кур,

$у$ – количество котов.

Со временем количество кур и котов меняется, но будем считать $х$ и $у$ непрерывными функциями от времени t. Назовем пару чисел $х, у)$ состоянием модели.

Найдем каким образом изменяется состояние модели $(х, у).$

Рассмотрим $\frac{dx}{dt}$ – скорость изменения количества кур.

Если котов нет, то количество кур возрастает и тем быстрее, чем больше кур. Будем считать зависимость линейной:

$\frac{dx}{dt} a_1 x$,

$a_1$ – коэффициент, который зависит только от условий жизни кур, их естественной смертности и рождаемости.

$\frac{dy}{dt}$ – скорость изменения количества котов (если нет кур), зависит от количества котов y.

Если кур нет, то количество котов уменьшается (у них нет пищи) и они вымирают. Будем считать зависимость линейной:

$\frac{dy}{dt} - a_2 y$.

В экосистеме скорость изменения количества каждого вида также будем считать пропорциональным его количеству, но только с коэффициентом, зависящим от количества особей другого вида. Так, для кур этот коэффициент уменьшается с увеличением количества котов, а для котов возрастает с увеличением количества кур. Будем считать зависимость также линейной. Тогда получим систему дифференциальных уравнений:

Данная система уравнений называется моделью Вольтерра-Лотки.

a1, a2, b1, b2 – числовые коэффициенты, которые называют параметрами модели.

Как видно, характер изменения состояния модели (x, y) определяется значениями параметров. Изменяя данные параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы.

С помощью программы MATLAB система уравнений Лотки-Вольтерра решается следующим образом:

На рис. 1 представлено решение системы. В зависимости от начальных условий решения разные, чему отвечают разные цвета траекторий.

На рис. 2 представлены те же решения, но с учетом оси времени t (т.е. наблюдается зависимость от времени).

Взаимодействие особей в системе «хищник - жертва»

Студента 5 курса 51 А группы

отделения Биоэкологии

Назарова А. А.

Научный руководитель:

Подшивалов А. А.

Оренбург 2011

ВВЕДЕНИЕ

ВВЕДЕНИЕ

В своих ежедневных рассуждениях и наблюдениях мы, сами того не зная, а часто даже не осознавая, руководствуемся законами и идеями, открытыми много десятилетий назад. Рассматривая проблему хищник – жертва, мы догадываемся, что опосредованно жертва тоже влияет на хищника. Чем бы обедал лев, если бы не было антилоп; что бы делали управленцы, если бы не было рабочих; как развивать бизнес, если у покупателей нет средств…

Система «хищник-жертва» - сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции. Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.

Изучение данной формы межвидовых взаимоотношений, помимо получения интересных научных результатов, позволяет решать многие практические задачи:

    оптимизация биотехнических мероприятий как по отношению к видам-жертвам, так и по отношению к хищникам;

    улучшение качества территориальной охраны;

    регуляция прессинга охоты в охотхозяйствах и т. д.

Выше сказанное определяет актуальность выбранной темы.

Целью курсовой работы является изучение взаимодействия особей в системе «хищник - жертва». Для достижения цели поставлены следующие задачи:

    хищничество и его роль в формировании трофических взамоотношений;

    основные модели взаимоотношения «хищник - жертва»;

    влияние общественного образа жизни в стабильности системы «хищник - жертва»;

    лабораторное моделирование системы «хищник - жертва».

Совершенно очевидно влияние хищников на численность жертв и наоборот, однако определить механизм и сущность этого взаимодействия достаточно сложно. Эти вопросы я намерен раскрыть в курсовой работе.

#�������################################################"#5#@#?#8#;#0###��####################+###########��\############### ###############��#���############# Глава 4

ГЛАВА 4. ЛАБОРАТОРНОЕ МОДЕЛИРОВАНИЕ СИСТЕМЫ «ХИЩНИК - ЖЕРТВА»

Ученые университета Дьюка в сотрудничестве с коллегами из Стэндфордского университета, Медицинского института Говарда Хьюза и Калифорнийского технологического института, работающие под руководством доктора Линчона Ю (Lingchong You), разработали живую систему из генетически модифицированных бактерий, которая позволит более детально изучить взаимодействия хищника и жертвы на популяционном уровне.

Новая экспериментальная модель является примером искусственной экосистемы, для создания которой исследователи программируют бактерии на выполнение новых функций. Такие перепрограммированные бактерии могут найти широкое применение в медицине, очистке окружающей среды и создании биокомпьютеров. В рамках данной работы ученые переписали «программное обеспечение» кишечной палочки (Escherichia coli) таким образом, что две разных бактериальных популяции сформировали в лабораторных условиях типичную систему взаимодействий хищник-жертва, особенностью которой являлось то, что бактерии не пожирали друг друга, а управляли численностью популяции-оппонента посредством изменения частоты «самоубийств».

Направление исследований, известное как синтетическая биология, возникло примерно в 2000 году, и в основе большинства созданных с тех пор систем лежит перепрограммирование одной бактерии. Разработанная авторами модель уникальна тем, что он состоит из двух живущих в одной экосистеме бактериальных популяций, выживание которых зависит друг от друга.

Ключевым моментом успешного функционирования такой системы является способность двух популяций взаимодействовать между собой. Авторы создали два штамма бактерий – «хищников» и «травоядных», в зависимости от ситуации высвобождающими в общую экосистему токсичные либо защитные соединения.

Принцип действия системы основан на поддержании соотношения количества хищников и жертв в регулируемой среде. Изменения количества клеток одной из популяций активируют перепрограммированные гены, что запускает синтез определенных химических соединений.

Так, малое количество жертв в среде вызывает активацию гена самоуничтожения в клетках хищника и их гибель. Однако, по мере увеличения численности жертв, высвобождаемое ими в среду соединение достигает критической концентрации и активирует ген хищника, обеспечивающий синтез «антидота» к суицидальному гену. Это ведет к росту популяции хищников, что, в свою очередь, приводит к накоплению в среде синтезируемого хищниками соединения, толкающего жертв на самоубийство.

С помощью флуоресцентной микроскопии ученые документировали взаимодействия между хищниками и жертвами.

Клетки-хищники, окрашенные в зеленый цвет, вызывают самоубийство клеток-жертв, окрашенных красным. Удлинение и разрыв клетки-жертвы свидетельствует о ее гибели.

Эта система не является точным отображением взаимодействий хищник-жертва в природе, т.к. бактерии-хищники не питаются бактериями-жертвами и обе популяции конкурируют за одни и те же пищевые ресурсы. Однако авторы считают, что разработанная ими система является полезным инструментом для биологических исследований.

Новая система демонстрирует четкую взаимосвязь между генетикой и динамикой популяций, что в будущем поможет при изучении влияния молекулярных взаимодействий на популяционные изменения, являющиеся центральной темой экологии. Система предоставляет практически неограниченные возможности изменения переменных для детального изучения взаимодействий между окружающей средой, регуляцией генов и популяционной динамикой.

Таким образом, с помощью управления генетического аппарата бактерии позволяет имитировать процессы развития и взаимодействия более сложных организмов.

ГЛАВА 3

ГЛАВА 3. ВЛИЯНИЕ ОБЩЕСТВЕННОГО ОБРАЗА ЖИЗНИ В СТАБИЛЬНОСТИ СИСТЕМЫ «ХИЩНИК - ЖЕРТВА»

Экологи из США и Канады показали, что групповой образ жизни хищников и их жертв радикально меняет поведение системы «хищник–жертва» и придает ей повышенную устойчивость. В основе данного эффекта, подтвержденного наблюдениями за динамикой численности львов и антилоп гну в парке Серенгети, лежит то простейшее обстоятельство, что при групповом образе жизни снижается частота случайных встреч хищников с потенциальными жертвами.

Экологи разработали целый ряд математических моделей, описывающих поведение системы «хищник–жертва». Эти модели, в частности, хорошо объясняют наблюдающиеся иногда согласованные периодические колебания численности хищников и жертв.


Для подобных моделей обычно характерен высокий уровень неустойчивости. Иными словами, при широком спектре входных параметров (таких как смертность хищников, эффективность превращения биомассы жертв в биомассу хищников и т. п.) в этих моделях рано или поздно все хищники либо вымирают, либо сначала съедают всех жертв, а потом всё равно погибают от голода.

В природных экосистемах, конечно, всё сложнее, чем в математической модели. По-видимому, существует множество факторов, способных повысить устойчивость системы «хищник–жертва», и в реальности дело редко доходит до таких резких скачков численности, как у канадских рысей и зайцев.

Экологи из Канады и США опубликовали в последнем номере журнала «Nature» статью, в которой обратили внимание на один простой и очевидный фактор, который может резко изменить поведение системы «хищник–жертва». Речь идет о групповом образе жизни.

Большинство имеющихся моделей исходят из предположения о равномерном распределении хищников и их жертв в пределах данной территории. На этом основаны расчеты частоты их встреч. Ясно, что чем выше плотность жертв, тем чаще натыкаются на них хищники. От этого зависит число нападений, в том числе успешных, и в конечном счете - интенсивность выедания жертв хищниками. Например, при избытке жертв (если не надо тратить время на поиски), скорость выедания будет ограничиваться только временем, необходимым хищнику для того, чтобы поймать, убить, съесть и переварить очередную жертву. Если добыча попадается редко, главным фактором, определяющим скорость выедания, становится время, необходимое для поисков жертвы.

В экологических моделях, используемых для описания систем «хищник–жертва», ключевую роль играет именно характер зависимости интенсивности выедания (число жертв, съедаемых одним хищником в единицу времени) от плотности популяции жертв. Последняя оценивается как число животных на единицу площади.

Следует обратить внимание, что при групповом образе жизни как жертв, так и хищников исходное допущение о равномерном пространственном распределении животных не выполняется, и поэтому все дальнейшие расчеты становятся неверными. Например, при стадном образе жизни жертв вероятность встречи с хищником фактически будет зависеть не от количества отдельных животных на квадратный километр, а от количества стад на ту же единицу площади. Если бы жертвы были распределены равномерно, хищники натыкались бы на них гораздо чаще, чем при стадном образе жизни, поскольку между стадами образуются обширные пространства, где нет никакой добычи. Сходный результат получается и при групповом образе жизни хищников. Прайд львов, бредущий по саванне, заметит ненамного больше потенциальных жертв, чем заметил бы одинокий лев, идущий тем же путем.

В течение трех лет (с 2003-го по 2007 год) ученые вели тщательные наблюдения за львами и их жертвами (прежде всего антилопами гну) на обширной территории парка Серенгети (Танзания). Плотность популяций фиксировалась ежемесячно; регулярно оценивалась также и интенсивность поедания львами различных видов копытных. И сами львы, и семь основных видов их добычи ведут групповой образ жизни. Авторы ввели в стандартные экологические формулы необходимые поправки, учитывающие это обстоятельство. Параметризация моделей проводилась на основе реальных количественных данных, полученных в ходе наблюдений. Рассматривалось 4 варианта модели: в первом групповой образ жизни хищников и жертв игнорировался, во втором учитывался только для хищников, в третьем - только для жертв, и в четвертом - для тех и других.


Как и следовало ожидать, лучше всего соответствовал реальности четвертый вариант. Он оказался к тому же и самым устойчивым. Это значит, что при широком спектре входных параметров в этой модели оказывается возможным длительное устойчивое сосуществование хищников и жертв. Данные многолетних наблюдений показывают, что в этом отношении модель тоже адекватно отражает реальность. Численности львов и их жертв в парке Серенгети довольно устойчивы, ничего похожего на периодические согласованные колебания (как в случае с рысями и зайцами) не наблюдается.

Полученные результаты показывают, что, если бы львы и антилопы гну жили поодиночке, рост численности жертв приводил бы к стремительному ускорению их выедания хищниками. Благодаря групповому образу жизни этого не происходит, активность хищников возрастает сравнительно медленно, и общий уровень выедания остается низким. По мнению авторов, подкрепленному рядом косвенных свидетельств, численность жертв в парке Серенгети лимитируется вовсе не львами, а кормовыми ресурсами.

Если выгоды коллективизма для жертв вполне очевидны, то в отношении львов вопрос остается открытым. Данное исследование наглядно показало, что групповой образ жизни для хищника имеет серьезный недостаток - по сути дела, из-за него каждому отдельному льву достается меньше добычи. Очевидно, что этот недостаток должен компенсироваться какими-то очень весомыми преимуществами. Традиционно считалось, что общественный образ жизни львов связан с охотой на крупных животных, с которыми трудно справиться в одиночку даже льву. Однако в последнее время многие специалисты (и в том числе авторы обсуждаемой статьи) стали сомневаться в правильности этого объяснения. По их мнению, коллективные действия необходимы львам только при охоте на буйволов, а с другими видами добычи львы предпочитают расправляться в одиночку.

Более правдоподобным выглядит предположение, что прайды нужны для регулирования чисто внутренних проблем, которых немало в львиной жизни. Например, у них распространен инфантицид - убийство самцами чужих детенышей. Самкам, держащимся группой, легче защищать своих детей от агрессоров. Кроме того, прайду гораздо легче, чем льву-одиночке, оборонять свой охотничий участок от соседних прайдов.

Источник : John M. Fryxell, Anna Mosser, Anthony R. E. Sinclair, Craig Packer. Group formation stabilizes predator–prey dynamics // Nature . 2007. V. 449. P. 1041–1043.

  1. Имитационное моделирование системы "Хищник -Жертва"

    Реферат >> Экономико-математическое моделирование

    ... системы «Хищник -Жертва» Выполнил Гизятуллин Р.Р гр.МП-30 Проверил Лисовец Ю.П МОСКВА 2007г. Введение Взаимодействие ... модель взаимодействия хищников и жертв на плоскости. Упрощающие предположения. Попробуем сопоставить жертве и хищнику некоторый...

  2. Хищник -Жертва

    Реферат >> Экология

    Приложения математической экологии является система хищник -жертва . Цикличность поведения этой системы в стационарной среде была... с помощью введения дополнительного нелинейного взаимодействия между хищником и жертвой . Полученая модель имеет на своей...

  3. Конспект экология

    Реферат >> Экология

    Фактором для жертвы . Поэтому взаимодействие «хищник жертва» носит периодический характер и описывается системой уравнений Лотки... сдвиг значительно меньше, чем в системе «хищник жертва» . Подобные взаимодействия наблюдаются и при бэтсовской мимикрии. ...



Loading...Loading...