Чистое ядерное оружие. Водородная против атомной

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород - дейтерий, ядра которого имеют необычную структуру - один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно-урановая бомба, а также некоторые ее разновидности - сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы, которая будет описана ниже.

Нового поколения может резко снизить порог применимости ядерных вооружений и нарушить сложившийся стратегический баланс

В июле 2006 г. во время операций против боевиков ливанского движения "Хезболла" израильская армия применила так называемые противобункерные бомбы. При этом в пробах грунта, взятых из бомбовых воронок, были обнаружены следы обогащенного урана. Одновременно было установлено, что радиоактивный распад осколков деления не сопровождался гаммаизлучением и образованием изотопа цезия137, а уровень радиации, высокий внутри воронок, на удалении нескольких метров от них уменьшался примерно наполовину.


Не исключена возможность, что в Южном Ливане Израилем было применено ядерное оружие (ЯО) нового поколения. Оно могло быть доставлено в Израиль из США специально для его испытаний в боевых условиях. Эксперты также предполагают, что подобное оружие уже использовалось в Ираке и Афганистане.

Отсутствие продуктов взрыва с длительным периодом распада, а также незначительное по площади радиоактивное загрязнение местности позволяют предположить, что в Южном Ливане могли применяться так называемые "чистые" термоядерные боеприпасы.

Известно, что существующие термоядерные заряды не обеспечивают заметной локализации (как по времени, так и по площади) масштабов радиоактивного загрязнения окружающей среды, поскольку работа их вторичного узла инициируется за счет реакции деления тяжелых ядер, следствием которой как раз и является долговременное радиоактивное загрязнение местности.

До сих пор именно последнее обстоятельство гарантировало высокий порог применения любых типов нынешнего ядерного оружия, включая ЯО малой и сверхмалой мощности. Теперь же, если результаты независимых экспертиз соответствуют действительности, можно говорить о появлении новых термоядерных боеприпасов, наличие которых на вооружении резко снижает психологический порог применимости ЯО.

При этом "чистые" термоядерные боеприпасы не подпадают в настоящее время под ограничения ни одного из существующих международных договоров и формально становятся по условиям своего применения на один уровень с обычным высокоточным оружием (ВТО), значительно превосходя последнее по разрушительной мощи.

Среди специалистов пока нет единой точки зрения, насколько далеко США и другие ведущие иностранные государства продвинулись в процессе разработки "чистых" термоядерных боеприпасов.

Между тем, косвенным подтверждением того, что в условиях строгой секретности работы по их созданию уже ведутся в США полным ходом, являются результаты практической деятельности нынешней американской администрации по реформированию своих стратегических наступательных сил (СНС).

О планах создания термоядерных боеприпасов нового поколения также свидетельствуют предпринимаемые Великобританией усилия, нацеленные на изменение существующей структуры своих стратегических ядерных сил (СЯС) и развертывание новой научно-исследовательской инфраструктуры для исследования проблем термоядерного синтеза.

Американское руководство первым среди ведущих иностранных государств осознало, что как нынешнее "грязное" стратегическое ядерное оружие, так и обычное ВТО, о котором много говорилось в рамках дискуссий о необходимости скорейшего перехода к концепции "неядерного сдерживания", сейчас не позволяют обеспечить решение всех задач, возлагаемых на стратегические силы.

В первую очередь это касается гарантированного уничтожения стратегических высокозащищенных и сильнозаглубленных целей (ВЗСЗЦ) противника, а также нейтрализации химических и биологических компонентов оружия массового уничтожения (ОМУ).

Новая американская ядерная стратегия

Анализ принятой в 2002 г. США новой ядерной стратегии показывает, что "чистому" термоядерному оружию отведена роль краеугольного камня перспективной американской стратегической триады.

Оно также исключительно четко вписывается в недавно принятую Соединенными Штатами концепцию "превентивных" ядерных ударов, в соответствии с которой ВС США получили право применять ЯО даже в условиях мирного времени.

Основные положения новой ядерной стратегии США изложены в представленном Конгрессу США в январе 2002 г. "Обзоре состояния и перспектив развития ядерных сил США" (Nuclear Posture Review; далее для краткости "Обзор…").

В данном концептуальном документе необходимость разработки и принятия на вооружение нового поколения ЯО обосновывается следующим образом.

"…Современный ядерный арсенал, до сих пор отражая потребности периода "холодной войны", характеризуется невысокой точностью стрельбы, ограниченными возможностями по перенацеливанию, высокой мощностью ядерных зарядных устройств боеголовок, баллистическими ракетами шахтного, наземного и морского базирования с боеголовками индивидуального наведения, невысокой способностью поражать заглубленные цели", поэтому "…ядерная стратегия, базирующаяся исключительно на возможностях стратегических наступательных ядерных сил, не может обеспечить сдерживание потенциальных противников, с которыми США придется столкнуться в XXI столетии".

Далее в "Обзоре…" формулируются основные требования, предъявляемые к ЯО нового поколения: "…придание современным ядерным силам новых возможностей должно обеспечить: поражение представляющих угрозу объектов, таких, как высокозащищенные и заглубленные цели, носители химического и биологического оружия; обнаружение и поражение мобильных и подвижных целей; повышение точности стрельбы; ограничение сопутствующего ущерба при применении ядерного оружия".

В "Обзоре…" также указывается, что "обеспечение таких возможностей посредством проведения интенсивных НИОКР и развертывание новых систем вооружения является настоятельно необходимым требованием при создании новой триады".

Как видно, в представленной концепции развития ядерных сил США одним из ключевых требований к новым типам ЯО является ограничение сопутствующего ущерба при их применении.

Поскольку в "чистых" термоядерных боеприпасах реакция синтеза должна инициироваться источником энергии, альтернативным реакции деления, то узловым моментом их разработки является замена существующего атомного "запала" мощным и компактным "детонатором".

При этом последний должен обладать энергетикой, достаточной для инициирования реакции термоядерного синтеза, а по своим массогабаритным характеристикам "вписываться" в головные части существующих средств доставки.

Можно ожидать, что основными поражающими факторами нового ЯО будут мгновенное гамманейтронное излучение, ударная волна, а также световое излучение. При этом проникающая радиация, являющаяся следствием радиоактивного распада осколков деления, будет сравнительно незначительной.

Ряд экспертов полагает, что в первую очередь новое термоядерное оружие будет использоваться для оснащения высокоточных управляемых ракет и авиабомб. При этом его мощность можно будет варьировать в пределах от единиц до сотен и более тонн тротилового эквивалента.

Это позволит применять "чистое" термоядерное оружие для избирательного поражения объектов противника, расположенных как на открытой местности (включая мобильные комплексы баллистических ракет), так и ВЗСЗЦ, не опасаясь долговременного радиоактивного загрязнения местности.

В связи с отсутствием радиоактивных осадков сухопутные части смогут действовать на территории, подвергшейся ударам ЯО, по оценкам, уже через 48 часов.

При использовании боеприпасов новых типов для поражения ВЗСЗЦ, включая хранилища ядерного, химического и биологического оружия, нейтронное и гаммаизлучения, возникающие непосредственно в момент взрыва, будут практически полностью поглощены прилегающими к месту взрыва слоями грунта.

По экспертным оценкам, для уничтожения находящихся на глубине свыше 300 метров ВЗСЗЦ потребуется создавать термоядерные боеприпасы мощностью порядка 100 кт и более.

По мнению американских специалистов, применение в качестве боевых частей противоракет (БЧ ПР) "чистых" термоядерных боеприпасов должно также существенно повысить эффективность создаваемой национальной системы ПРО.

Ожидается, что подобные боеприпасы будут обладать достаточно широкими поражающими возможностями для гарантированной нейтрализации боеголовок баллистических ракет противника, оснащенных ОМУ. При этом подрыв БЧ ПР над своей территорией даже на малой высоте не приведет к значительному радиоактивному загрязнению окружающей среды.

Новая структура американских стратегических сил

Рассмотрим теперь более подробно те изменения, которые должны произойти непосредственно в структуре американских СНС.

В настоящее время триада СНС США состоит из межконтинентальных баллистических ракет (МБР), атомных подводных лодок с баллистическими ракетами (ПЛАРБ) и самолетов стратегической бомбардировочной авиации (СБА), на вооружении которых имеется около 6000 "грязных" ядерных боезарядов (ЯБЗ).

Новая американская ядерная стратегия предусматривает создание вместо нее качественно иной стратегической триады, которая будет включать:

  • ядерные и неядерные стратегические наступательные вооружения;
  • активные и пассивные стратегические оборонительные вооружения;
  • обновленную военную, научноисследовательскую и промышленную инфраструктуру.

Перечисленные компоненты новой триады должны быть объединены в единое целое усовершенствованной системой связи, управления, разведки и адаптивного планирования.

Первая (ударная) компонента новой стратегической триады, в свою очередь, будет состоять из двух малых триад: триады сил "глобальных ударов" и старой триады СНС сокращенного состава.

Силы "глобальных ударов" планируется развернуть на базе самолетов СБА (включая часть нынешней авиационной компоненты СНС США), многоцелевых атомных подводных лодок (АПЛ) и надводных кораблейносителей крылатых ракет морского базирования (КРМБ), а также части МБР и БРПЛ из состава СНС.

Ожидается, что на вооружении сил "глобальных ударов" будет состоять ВТО как в обычном, так и в ядерном ("чистое" ЯО) оснащении.

Существующая триада СНС в рамках Договора о сокращении стратегических наступательных потенциалов подвергнется коренному сокращению. К 2012 г. на ее вооружении будет числиться 17002200 оперативно развернутых ядерных боезарядов. Остальные ЯБЗ будут переведены в активный или пассивный резерв.

Оперативное управление обеими ударными составляющими новой стратегической триады возложено в настоящее время на Объединенное стратегическое командование (ОСК) ВС США.

Исходя из задач, возлагаемых на ОСК ВС США и Объединенные командования (ОК) ВС США в передовых зонах, можно предположить, что силы "глобальных ударов" будут использоваться для оперативного нанесения превентивных ударов по стратегическим объектам противника в любой точке земного шара, а также для ведения боевых действий в региональных конфликтах.

Ядерные силы старой триады СНС, на вооружении которых сохранятся существующие типы стратегических ЯБЗ, продолжат выполнение задач стратегического ядерного сдерживания. В случае коренного изменения военнополитической обстановки они будут использованы для нанесения "противосиловых" или "противоценностных" ракетноядерных ударов по важнейшим стратегическим объектам противника, в качестве которого в первую очередь рассматриваются Россия и Китай.

Вторая компонента стратегической триады США также будет состоять из двух составляющих: ударных (активных) сил, предназначенных для оперативного поражения ракетных комплексов противника в их позиционных районах, а также сил ПРО для перехвата стартовавших баллистических ракет и их боеголовок (пассивные силы).

В 2003 г. США денонсировали Договор об ограничении систем противоракетной обороны. Данное обстоятельство позволяет им приступить к неограниченной разработке, испытаниям и развертыванию противоракетных систем любых классов с размещением их компонентов как на территории США, так и за ее пределами.

Новый термоядерный боеприпас органично "вписывается" и в планы создания третьей компоненты американской стратегической триады – обновленной оборонной инфраструктуры.

По замыслам американского руководства, она призвана оперативно осуществлять разработку, испытания, производство и принятие на вооружение перспективных наступательных и оборонительных систем, включая ядерные, в ответ на любые возникающие угрозы.

В настоящее время в США для исследования проблемы термоядерного синтеза по трем разным направлениям развернута мощная испытательная база. Не приходится сомневаться, что эта база будет использоваться не только в интересах промышленного освоения термоядерной энергии, но и для создания новых термоядерных зарядов.

Так, в Ливерморской лаборатории им. Лоуренса (шт. Калифорния) для имитации ядерных испытаний создана самая мощная в мире лазерная термоядерная установка (ЛТУ) NIF (National Ignition Facility), способная реализовывать температуры и давления, наблюдаемые в природе только в центре звезд. Общая стоимость установки, по оценкам, составит к 2008 г. 3,3 млрд. долл.

Для этих же целей в ЛосАламосской национальной лаборатории (шт. НьюМексико) и Научно-исследовательской лаборатории ВВС (авиабаза Киртланд) совместно используется установка MTF (Magnetized Target Fusion).

В интересах изучения физических процессов с высокой плотностью энергии в национальной лаборатории "Сандия" (г. Альбукерк) модернизируется мощный генератор электрических импульсов, так называемая "Zмашина".

Создание новых типов ЯО невозможно без проведения ядерных испытаний. По этой причине администрация Бушамладшего отказалась от повторного выдвижения в Сенат конгресса США Договора о всеобъемлющем запрещении ядерных испытаний для его ратификации.

Находясь, таким образом, вне правового поля данного договора, США обеспечили себе возможность реализовывать любые программы ядерных испытаний в любое удобное для себя время.

Параллельно с проведением научных исследований США активно осуществляют мероприятия по сокращению с 36 до 12 месяцев срока готовности испытательного полигона в штате Невада к возобновлению подземных ядерных взрывов.

Стратегия превентивных ядерных ударов

В 2005 г. Соединенные Штаты внесли важные изменения в стратегию применения ядерного оружия.

В соответствии с концепцией "превентивных ударов", которая больше известна как "Доктрина Буша", вооруженные силы США получили право наносить в мирное время превентивные ядерные удары по странам, от которых может исходить угроза национальной безопасности США или их союзникам.

Особо следует подчеркнуть, что указанная доктрина предусматривает также возможность возвращения в ВВС и ВМС США (в первую очередь на надводные боевые корабли и подводные лодки) снятых в 1991 г. носителей тактического ядерного оружия.

Следует добавить, что в США уже практически заканчивается развертывание стратегической ударной системы на базе атомных подводных лодок (ПЛАРК) типа "Огайо", оснащенных крылатыми ракетами "Томахок" Block IV, которые представляют собой оптимальное средство доставки к целям нового ЯО.

По своим тактикотехническим характеристикам КРМБ "Томахок" Block IV является наиболее совершенной крылатой ракетой этого класса. Максимальная дальность ее полета уже сейчас составляет 2800 км. Ракета способна в течение 2 часов барражировать в районе цели для ее поиска или доразведки. За счет оснащения КРМБ спутниковым каналом связи возможно также перенацеливание ракеты в полете.

На каждой ПЛАРК типа "Огайо" может размещаться до 154 КРМБ.

В 2006 г. Великобритания (вслед за США) приступила к кардинальному пересмотру своей доктрины ядерного сдерживания.

В настоящее время основу СЯС Великобритании составляют четыре подводные лодкиракетоносца типа "Вэнгард", каждая из которых оснащена 16 баллистическими ракетами "Трайдент2" с разделяющимися боеголовками. Нынешние СЯС Великобритании представляются устаревшим образцом противостояния современной ядерной угрозе и больше отвечают реалиям "холодной войны", чем сегодняшнего дня. Альтернативным вариантом существующей системе "Вэнгард" станет система вооружения, развернутая на базе подводных лодок, оснащенных ядерными крылатыми ракетами. Особо подчеркивается, что в интересах соблюдения Договора о нераспространении ядерного оружия боеголовки для крылатых ракет должны быть разработаны Великобританией самостоятельно, а не получены из США.

Великобритания уже приступила к переоборудованию своих многоцелевых АПЛ в носители КРМБ "Томахок" модификации Block IV.

АПЛ "Трафальгар" стала первой лодкой в составе британских ВМС, способной производить пуски данных ракет. На лодке были установлены новейшая система управления стрельбой КРМБ "Томахок" (TTWCS), разработанная американской фирмой "ЛокхидМартин", и система двусторонней спутниковой связи TSN (Tomahawk Strike Network), предназначенная для перенацеливания КРМБ данной модификации в полете.

Представленный вариант развития СЯС Великобритании не является чемто новым. Еще в середине 1970х гг. британским министерством обороны изучался вопрос о принятии на вооружение своих СЯС американских КРМБ типа "Томахок" в ядерном оснащении. Однако в 1979 г. по ряду причин правительство Великобритании отказалось от этого варианта в пользу нынешних ПЛАРБ типа "Вэнгард" с БРПЛ "Трайдент2".

Параллельно с разработкой новой доктрины ядерного сдерживания в Великобритании осуществляется ряд программ по развитию ядерной инфраструктуры, которая может потребоваться для создания ЯО, предназначенного для оснащения новой составляющей британских СЯС.

При этом Великобритания (как и США) концентрирует свои усилия на создании испытательной базы, нацеленной на исследование проблемы термоядерного синтеза. В этой связи ожидается, что вслед за США "чистые" термоядерные боеприпасы появятся в скором времени и на вооружении обновленных британских СЯС.

Летом 2005 г. на заседании специального комитета по вопросам обороны Палаты общин британского парламента было заявлено о расширении научноисследовательского центра по разработке ядерных вооружений Великобритании. В г. Олдермастон (графство Беркшир) начато строительство ЛТУ стоимостью около одного миллиарда фунтов стерлингов и заявлено о дополнительном приеме на работу в этот центр к 2008 г. свыше 1 тыс. специалистов.

По данным печати, после ввода в строй новой ЛТУ "Орион" она должна обеспечивать воссоздание физических процессов, протекающих в условиях ядерной реакции. Не выходя за рамки Договора о всеобъемлющем запрещении ядерных испытаний, участником которого является Великобритания, ЛТУ будет также использоваться для тестирования элементов разрабатываемых ЯБЗ.

Таким образом, можно предположить, что в ближайшем будущем Великобритания сосредоточит усилия на создании новой стратегической ядерной "диады", которая будет состоять из четырех ПЛАРБ типа "Вэнгард" с БРПЛ "Трайдент2" и нескольких ПЛАРК типа "Трафальгар", оснащенных КРМБ "Томахок" с "чистыми" термоядерными боеприпасами.

ПЛАРБ типа "Вэнгард" будут находиться на вооружении обновленных британских СЯС, по крайней мере, до 20202025 гг., когда истекает срок эксплуатации баллистических ракет "Трайдент2".

По оценкам, на создание новой стратегической "диады" Великобритания может затратить около 20 млрд. фунтов стерлингов.

В заключение следует обратить внимание на одно важное обстоятельство. В случае успешной разработки ЯО нового поколения США и Великобритания приобретают значительное военнотехническое превосходство в области стратегических вооружений. Нынешнее "грязное" стратегическое ЯО, по большому счету, становится для них ненужным.

В этой связи необходимо быть готовым к тому, что США и Великобритания, опираясь на тезис об угрозе мировой цивилизации со стороны "грязного" ЯО, могут выступить с инициативой о его всеобщем запрещении. При этом на вооружении ядерных стран должно будет остаться только "чистое" термоядерное оружие, у которого ~ 99 % энергии должно выделяться в реакциях синтеза.

Понятно, что термоядерные боеприпасы, составляющие сейчас основу стратегических вооружений ядерных держав, не будут отвечать столь высоким требованиям.

Таким образом, используя подконтрольные международные организации, США и Великобритания могут поставить перед остальными участниками ядерного клуба своеобразный научнотехнический барьер. Он может являть собой, например, международные обязательства о разработке и принятии на вооружение исключительно термоядерных боезарядов с осколочной активностью менее одного процента.

Это потребует от других ядерных государств экстренного создания мощной исследовательской, производственной и испытательной базы, огромных финансовых и временных затрат.

В то же время имеющийся военнотехнический задел в области "чистого" термоядерного оружия позволит США и Великобритании приобрести односторонние военнополитические преимущества на довольно длительный срок.

Таким образом:

  1. США и Великобритания ведут активную разработку ядерного оружия нового поколения, применение которого позволяет обеспечить ограничение сопутствующего ущерба. В связи с этим они приступили к коренному реформированию структуры и состава своих СЯС, а также форм и способов боевого применения этих сил.
  2. Новое ядерное оружие находится вне правового поля всех существующих международных договоров, связанных с разработкой, испытаниями, распространением или применением ЯО.
  3. Принятие на вооружение ядерного оружия нового поколения позволяет значительно снизить порог применения ЯО и практически нивелировать различие между ним и ВТО общего назначения по условиям боевого применения.
  4. Российской Федерации необходимо в срочном порядке предпринять адекватные меры по укреплению отечественного потенциала сдерживания.

В западной прессе с некоторых пор появился термин loose nukes, под которым понимаются вышедшие из-под контроля государств ядерные боеприпасы, причем имеются в виду не заряды, утраченные в ходе инцидентов с военной техникой. После распада СССР было немало спекуляций на тему возможной утраты контроля над советским ядерным арсеналом со стороны руководства новых независимых государств, прежде всего России. Эти разговоры получили новый импульс после заявления бывшего секретаря Совета безопасности РФ генерала Александра Лебедя. В 1997 году он сказал, что во время пребывания в должности им якобы была создана комиссия по поиску портативных ядерных боеприпасов, имевших вид чемоданчика. По словам Лебедя, часть этих устройств (в разных интервью генерал называл разные цифры) была утрачена и даже, возможно, попала в руки чеченских сепаратистов. На официальном уровне Россия никогда не признавала утрату подобных ядерных средств, хотя это не значит, что переносных зарядов не существовало. Действительно, сообщалось, что начиная с 1960-х годов в СССР создавались носимые ядерные мины, правда, они имели вид ранцев, а не чемоданов. По следам скандальных заявлений Александра Лебедя и бурной реакции мировой прессы в 1998 году по инициативе секретаря Совета безопасности Андрея Кокошина была проведена проверка, в результате которой выяснилось, что ранцевые боеприпасы надежно хранились в одном из арсеналов и в войска не выдавались. К настоящему времени, вероятнее всего, все они уничтожены в рамках инициатив по сокращению тактических ядерных вооружений. Малогабаритные боеприпасы также создавались в США и предположительно в Израиле и Китае.

Террористам, которые задумают сделать бомбу, придется получить немало дополнительных знаний, в том числе в области технологии обработки радиоактивных металлов.

В Соединенных Штатах боеприпасы такого класса имели название SADM (аббревиатура, расшифровывающаяся как «специальный разрушающий атомный боеприпас») и представляли собой ранцы, имевшие минимальный вес 50−70 кг и мощность, эквивалентную 1кт. Они предназначались диверсионным подразделениям, которые могли высаживаться на территории противника в районе побережья, закладывать заряды под стратегические объекты, включать таймер и затем эвакуироваться, например с помощью подводной лодки. Также предполагалось вооружать ранцами инженерные подразделения для постановки заслонов, например в районе Фульдского коридора — двух низин среди гор, по которым ожидался рывок танков Варшавского договора с территории ГДР в направлении Франкфурта-на-Майне. Эти боеприпасы также уничтожены американской стороной в рамках процесса разоружения. В общем, если обвинения России в слабом контроле за ядерными боеприпасами так и не получили весомых подтверждений, факт существования ядерных мин диверсионного класса не подлежит сомнению.

Еще одна ядерная держава, сохранность ядерного арсенала которой вызывает определенное беспокойство, это Пакистан. 6 сентября прошлого года на военно-морской базе в Карачи произошел инцидент со стрельбой. Группа фундаменталистов на лодках попыталась захватить фрегат ВМС Пакистана. Морякам удалось отбить нападение, но в ходе расследования инцидента выяснилось, что в диверсионной вылазке на стороне боевиков участвовали младшие офицеры пакистанской армии. Кроме того, в заговоре могли быть замешаны и более высокопоставленные военные. Состояние вооруженных сил страны, где среди военнослужащих немало людей, симпатизирующих исламистам, вселяет беспокойство за судьбу ядерного арсенала Пакистана, недавно присоединившегося к атомному клубу. Особенно с учетом наличия в стране территорий, где процветает черный рынок оружия: они находятся в международно признанных границах Пакистана, но не контролируются армией и полицией.


Корабль Glomar Explorer, построенный корпорацией эксцентричного магната Говарда Хьюза по заказу ЦРУ, был замаскирован под научное судно. На самом деле в его днище был сделан специальный вырез для подъема на борт погибшей советской подлодки К-129 с ядерным оружием на борту.

Проще, чем мы думали

Однако, если страшный сон о завладении террористами боеприпасов из арсеналов ядерных государств, к счастью, пока не стал явью, то остается другая возможность. По силам ли злоумышленниками изготовить атомную бомбу, так сказать, в домашних условиях?

В разнообразных публикациях на эту тему, например в докладе, подготовленном Институтом контроля за ядерными материалами (Вашингтон, США), был сделан вывод о том, что хоть дело это крайне непростое, бомбу террористы сделать могут. Речь, правда, идет именно о взрывном устройстве, а не о сырье. В качестве сырья в производстве атомного оружия применяется высокообогащенный (то есть содержащий более 90% изотопа U235) уран и оружейный плутоний (Pu239), хотя можно изготовить бомбу (малоэффективную) и из реакторного плутония, загрязненного изотопами Pu240 и Pu242. Обогащение урана — долгий и сложный процесс, детали этой технологии держатся государствами в строгом секрете, плутоний в природе вообще практически не встречается — его получают путем облучения нейтронами урана или нептуния. Также в результате облучения урана-238 плутоний постепенно накапливается в топливных стержнях реакторов АЭС, но отделить его от урана и прочих примесей — весьма трудоемкая задача. Для изготовления бомбы террористы должны будут похитить готовые ядерные материалы или купить уже похищенные на черном рынке.


Этот памятный знак установлен в городе Эурека, штат Северная Каролина — неподалеку от того места, где со своим страшным грузом расстался терпящий крушение B-52. Одна из выброшенных бомб ушла в болото на 50-метровую глубину, да там до сих пор и лежит.

Для того чтобы произошел ядерный взрыв, необходимо перевести массив ядерного материала в сверхкритическое состояние, после чего начинается неконтролируемая реакция деления ядер с излучением нейтронов и выделением энергии. Достичь сверхкритического состояния можно, во‑первых, быстро соединив два подкритических фрагмента ядерных материалов в один или, во‑вторых, резко увеличив плотность подкритической сборки. Бомба Little Boy («Малыш»), что упала на Хиросиму, была построена по первому принципу («пушечная схема»). Внутри нее один фрагмент высокообогащенного урана выстреливался в другой фрагмент, и возникало сверхкритическое состояние. По второму принципу сконструировали бомбу, разрушившую Нагасаки (Fat Boy, «Толстяк»). Там плутониевая сфера равномерно обжималась взрывом (имплозивная схема), за счет чего и создавалась сверхкритичность.


Американский бомбардировщик B-52 не раз фигурировал в инцидентах с ядерным оружием. Громкая история случилась в январе 1966 г, когда этот гигантский самолет столкнулся в воздухе с заправщиком KC-135 неподалеку от испанской рыбацкой деревни Паломарес. Из четырех водородных бомб на борту три упали на землю и заразили местность радиацией, а одна рухнула в море и была найдена лишь два с половиной месяца спустя.

Мы не зря вспомнили бомбы зари атомной эры: большинство экспертов сходятся в том, что если террористы и смогут построить бомбу, то она как раз конструктивно будет напоминать ранние, простые, несовершенные образцы. Наиболее простая схема — пушечная, типа «Малыша», но для ее реализации необходим исключительно высокообогащенный уран в металлической форме. Достать его можно, похитив, например, топливные элементы научно-исследовательских реакторов. Более вероятно, что в руки террористов попадут широко используемые в атомной промышленности порошки оксидов урана или плутония. Ни порошки (из-за низкой плотности), ни даже металлический плутоний (из-за сильного нейтронного фона) для пушечной схемы не годятся. Это только по меркам нашего восприятия выстрел в пушке происходит мгновенно. В реальности же, пока две подкритические массы соединятся в сверхкритическую, нейтроны преждевременно запустят цепную реакцию, что заметно снизит мощность взрыва. Из порошков оксидов можно восстановить металлы, но это будет еще одно непростое звено в технологической цепочке. Есть вариант использовать порошки сами по себе, увеличив их плотность, но для этого понадобится специфический пресс, приобрести который, не привлекая к себе ненужного внимания, затруднительно.

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как иногда называемой водородной. Вместо выделения энергии взрыва при расщеплении ядер тяжелых элементов, вроде урана, она генерирует даже большее ее количество путем слияния ядер легких элементов (например, изотопов водорода) в один тяжелый (например, гелий).

Почему предпочтительнее слияние ядер?

При термоядерной реакции, заключающейся в слиянии ядер участвующих в ней химических элементов, генерируется значительно больше энергии на единицу массы физического устройства, чем в чистой атомной бомбе, реализующей ядерную реакцию деления.

В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. При этом многие нейтроны, освобождающиеся из делящихся ядер, будут вызывать деление других ядер в массе топлива, которые также выделяют дополнительные нейтроны, что приводит к цепной реакции. Она охватывает не более 20 % топлива, прежде чем бомба взрывается, или, возможно, гораздо меньше, если условия не идеальны: так в атомных бомбах Малыш, сброшенной на Хиросиму, и Толстяк, поразившей Нагасаки, КПД (если такой термин вообще можно к ним применять) были всего 1,38 % и 13%, соответственно.

Слияние (или синтез) ядер охватывает всю массу заряда бомбы и длится, пока нейтроны могут находить еще не вступившее в реакцию термоядерное горючее. Поэтому масса и взрывная мощность такой бомбы теоретически неограниченны. Такое слияние может продолжаться теоретически бесконечно. Действительно, термоядерная бомба является одним из потенциальных устройств конца света, которое может уничтожить всю человеческую жизнь.

Что такое реакция слияния ядер?

Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. содержащегося в стакане воды, можно в результате термоядерной реакции получить такое же количество теплоты, как и при сгорании 200 л бензина. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Тритий в природе в свободном состоянии вообще не встречается, поэтому он гораздо дороже, чем дейтерий, с рыночной ценой в десятки тысяч долларов за грамм, однако наибольшее количество энергии высвобождается именно в реакции слияния ядер дейтерия и трития, при которой образуется ядро атома гелия и высвобождается нейтрон, уносящий избыточную энергию в 17,59 МэВ

D + T → 4 Не + n + 17,59 МэВ.

Схематически эта реакция показана на рисунке ниже.

Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. Следовательно слияние только двух ядер дейтерия и трития высвобождает столько энергии, сколько выделяется при сгорании 2,3∙10 6 ∙17,59 = 40,5∙10 6 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба.

Как все начиналось

Еще летом 1942 г. в начале реализации проекта создания атомной бомбы в США (Манхэтенский проект) и позднее в аналогичной советской программе, задолго до того, как была построена бомба, основанная на делении ядер урана, внимание некоторых участников этих программ было привлечено к устройству, которое может использовать гораздо более мощную термоядерную реакцию слияния ядер. В США сторонником этого подхода, и даже, можно сказать, его апологетом, был уже упомянутый выше Эдвард Теллер. В СССР это направление развивал Андрей Сахаров, будущий академик и диссидент.

Для Теллера его увлечение термоядерным синтезом в годы создания атомной бомбы сыграло скорее медвежью услугу. Будучи участником Манхэтенского проекта, он настойчивые призывал к перенаправлению средств на реализацию собственных идей, целью которых была водородная и термоядерная бомба, что не понравилось руководству и вызвало напряженность в отношениях. Поскольку в то время термоядерное направление исследований не было поддержано, то после создания атомной бомбы Теллер покинул проект и занялся преподавательской деятельностью, а также исследованиями элементарных частиц.

Однако начавшаяся холодная война, а больше всего создание и успешное испытание советской атомной бомбы в 1949 г., стали для яростного антикоммуниста Теллера новым шансом реализовать свои научные идеи. Он возвращается в Лос-Аламосскую лабораторию, где создавалась атомная бомба, и совместно со Станиславом Уламом и Корнелиусом Эвереттом приступает к расчетам.

Принцип термоядерной бомбы

Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века:

  • вариант Теллера, известный как "классический супер";
  • более сложные, но и более реальные конструкции из нескольких концентрических сфер;
  • окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия.

Аналогичные этапы проектирования прошли и термоядерные бомбы СССР, у истоков создания которых стоял Андрей Сахаров. Он, по-видимому, вполне самостоятельно и независимо от американцев (чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США) прошел все вышеперечисленные этапы проектирования.

Первые два поколения обладали тем свойством, что они имели последовательность сцепленных "слоев", каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный.

Устройство термоядерной бомбы по принципу Теллера-Улама

Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба (т. е. первичный заряд) используется для генерации излучения, сжимает и нагревает термоядерное топливо. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей".

Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.

Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития.

Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы (эта идея сначала была использована в СССР) просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой (или урановой) оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия.

Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже.

В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд - сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок.

Последовательность термоядерного взрыва

Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение (поток нейтронов), которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине.

На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива.

Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.

Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь.

В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда.

Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т. е. осуществлялся еще один, дополнительный атомный взрыв с целью еще большего поднятия температуры для гарантированного начала реакции слияния ядер. В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы.

Операция Плющ

Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. во время которых была взорвана первая термоядерная бомба. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже.

Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже.

СССР дает симметричный ответ

Термоядерное первенство США продержалось недолго. 12.08.1953 г. на Семипалатинском полигоне была испытана первая советская термоядерная бомба РДС-6, разработанная под руководством Андрея Сахарова и Юлия Харитона.Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6 Li (это связано с особенностями прохождения термоядерных реакций), а в природе он находится в смеси с изотопом 7 Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6 Li.

Достижение предельной мощности

Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30.10.1961 г. в СССР над полигоном Новая Земля в воздухе на высоте около 4 км была взорвана самая мощная термоядерная бомба, которая когда-либо была построена и испытана, известная на Западе как «Царь-бомба».

Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн.Внешний вид бомбы показан на фото ниже.

Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже.

При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже.

После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить.

Современная Россия унаследовала ядерный арсенал СССР. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны.

Солнце как термоядерный реактор

Общеизвестно, что температура Солнца, точнее его ядра, достигающая 15000000 °К, поддерживается за счет непрерывного протекания термоядерных реакций. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба?

Дело в том, что при огромной доле водорода в составе солнечной массы, которая достигает 71 %, доля его изотопа дейтерия, ядра которого только и могут участвовать в реакции термоядерного синтеза, ничтожно мала. Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино (т. наз. бета-распад), что является редким событием. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле.



Loading...Loading...