Горячая вселенная и большой взрыв. А было ли что-нибудь до Большого Взрыва? Теория большого взрыва: возникновение Вселенной из ничтожно малой частицы

Поверхность шарика - это пространство, в котором мы живем

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.

ОБЗОР: КОСМИЧЕСКОЕ НЕДОРАЗУМЕНИЕ
* Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование.
* Не следует воспринимать термин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара.
* Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная.
* Модель Большого взрыва описывает лишь то, что случилось после него.

Что такое расширение?

Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.

Дорожная пробка

Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.

Быстрее света

Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.

МОГУТ ЛИ ГАЛАКТИКИ УДАЛЯТЬСЯ СО СКОРОСТЬЮ ВЫШЕ СКОРОСТИ СВЕТА?

НЕВЕРНО : Частная теория относительности Эйнштейна запрещает это. Рассмотрим область пространства, содержащую несколько галактик. Из-за ее расширения галактики удаляются от нас. Чем дальше галактика, тем больше ее скорость (красные стрелки). Если скорость света – предел, то скорость удаления должна в итоге стать постоянной.

ВЕРНО : Разумеется, могут. Частная теория относительности не рассматривает скорость удаления. Скорость удаления бесконечно возрастает с рассто- янием. Дальше некоторого расстояния, называемого хаббловским, она превышает скорость света. Это не является нарушением теории относительности, пос- кольку удаление вызвано не движением в простран- стве, а расширением самого пространства.

МОЖНО ЛИ УВИДЕТЬ ГАЛАКТИКИ, УДАЛЯЮЩИЕСЯ БЫСТРЕЕ СВЕТА?

НЕВЕРНО : Конечно нет. Свет от таких галактик улетает вместе с ними. Пусть галактика находится за пределом хаббловского расстояния (сфера), т.е. удаляется от нас быстрее скорости света. Она испускает фотон (помечено желтым цветом). Пока фотон летит сквозь пространство, само оно расширяется. Расстояние до Земли увеличивается быстрее, чем движется фотон. Он никогда не достигнет нас.

ВЕРНО : Конечно можно, поскольку скорость расширения изменяется со временем. Сначала фотон действительно сносится расширением. Однако хаббловское расстояние не постоянно: оно увеличивается, и в конце концов фотон может попасть в сферу Хаббла. Как только это случится, фотон будет двигаться быстрее, чем удаляется Земля, и он сможет достичь нас.

Растяжение фотонов

Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

ГИПОТЕЗА УСТАЛОСТИ

Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).

Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.

Бег на месте

Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

ДЕЙСТВИТЕЛЬНО ЛИ КОСМИЧЕСКОЕ КРАСНОЕ СМЕЩЕНИЕ – ЭТО ДОПЛЕРОВСКОЕ СМЕЩЕНИЕ?
НЕВЕРНО : Да, потому что удаляющиеся галактики движутся в пространстве. В эффекте Доплера световые волны растягиваются (становясь более красными), когда их источник удаляется от наблюдателя. Длина волны света не меняется во время его путешествия сквозь пространство. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. ВЕРНО : Нет, красное смещение не имеет никакого отношения к эффекту Доплера. Галактика почти неподвижна в пространстве, поэтому испускает свет одинаковой длины волны во всех направлениях. За время пути длина волны становится больше, поскольку пространство расширяется. Поэтому свет постепенно краснеет. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. Космическое красное смещение отличается от доплеровского смещения, что подтверждают наблюдения.

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не увидим происходящие события – это космический горизонт событий. Если свет от галактик, удаляющихся быстрее скорости света, достигнет нас, значит, расстояние Хаббла увеличится. Но в ускоряющейся Вселенной его увеличение запрещено. Удаленное событие может послать луч света в нашем направлении, но этот свет навсегда останется за пределом расстояния Хаббла из-за ускорения расширения.

Как видим, ускоряющаяся Вселенная напоминает черную дыру, тоже имеющую горизонт событий, извне которого мы не получаем сигналов. Нынешнее расстояние до нашего космического горизонта событий (16 млрд. световых лет) целиком лежит в пределах нашей наблюдаемой области. Свет, испущенный галактиками, находящимися сейчас дальше космического горизонта событий, никогда не сможет достигнуть нас, т.к. расстояние, которое сейчас соответствует 16 млрд. световых лет, будет расширяться слишком быстро. Мы сможем увидеть события, происходившие в галактиках прежде, чем они пересекли горизонт, но о последующих событиях мы не узнаем никогда.

Во Вселенной расширяется все?

Люди часто думают, что если пространство расширяется, то и все в нем тоже расширяется. Но это неверно. Расширение как таковое (т.е. по инерции, без ускорения или замедления) не производит никакой силы. Длина волны фотона увеличивается вместе с ростом Вселенной, поскольку в отличие от атомов и планет фотоны не связанные объекты, размеры которых определяются равновесием сил. Изменяющаяся скорость расширения действительно вносит новую силу в равновесие, но и она не может заставить объекты расширяться или сжиматься.

Например, если бы гравитация стала сильнее, ваш спинной мозг сжался бы, пока электроны в позвоночнике не достигли бы нового положения равновесия, чуть ближе друг к другу. Ваш рост немного уменьшился бы, но сжатие на этом прекратилось бы. Точно так же, если бы мы жили во Вселенной с преобладанием сил тяготения, как еще несколько лет назад считало большинство космологов, то расширение замедлялось бы, а на все тела действовало бы слабое сжатие, заставляющее их достигать меньшего равновесного размера. Но, достигнув его, они бы больше не сжимались.

НАСКОЛЬКО ВЕЛИКА НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ?

НЕВЕРНО : Вселенной 14 млрд. лет, поэтому наблюдаемая ее часть должна иметь радиус 14 млрд. световых лет.Рассмотрим самую далекую из наблюдаемых галактик – ту, чьи фотоны, испущенные сразу после Большого взрыва, только теперь достигли нас. Световой год – это расстояние, проходимое фотоном за год. Значит, фотон преодолел 14 млрд. световых лет ВЕРНО : Поскольку пространство расширяется, наблюдаемая область имеет радиус больше, чем 14 млрд. световых лет. Пока фотон путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени полета, – приблизительно втрое больше

Фактически же расширение ускоряется, что вызвано слабой силой, «раздувающей» все тела. Поэтому связанные объекты имеют размеры немного больше, чем были бы в неускоряющейся Вселенной, поскольку равновесие сил достигается у них при немного большем размере. На поверхности Земли ускорение, направленное наружу, от центра планеты, составляет мизерную долю (10–30) нормального гравитационного ускорения к центру. Если это ускорение неизменно, то оно не заставит Землю расширяться. Просто планета принимает чуть больший размер, чем он был бы без силы отталкивания.

Но все изменится, если ускорение не постоянно, как полагают некоторые космологи. Если отталкивание увеличивается, то это может в конце концов вызвать разрушение всех структур и привести к «Большому разрыву», который произошел бы не из-за расширения или ускорения как такового, а потому что ускорение ускорялось бы.

А ОБЪЕКТЫ ВО ВСЕЛЕННОЙ ТОЖЕ РАСШИРЯЮТСЯ?

НЕВЕРНО : Да. Расширение заставляет Вселенную и все находящееся в ней увеличиваться. В качестве объекта рассмотрим скопление галактик. Раз Вселенная становится больше, то и скопление – также. Граница скопления (желтая линия) расширяется.

ВЕРНО : Нет. Вселенная расширяется, но связанные объекты в ней не делают этого. Соседние галактики сначала удаляются, но в конечном счете их взаимное притяжение пересиливает расширение. Формируется скопление такого размера, которое соответствует его равновесному состоянию.

По мере того как новые точные измерения помогают космологам лучше понять расширение и ускорение, они могут задаться еще более фундаментальными вопросами о самых ранних мгновениях и наибольших масштабах Вселенной. Чем было вызвано расширение? Многие космологи считают, что в этом виноват процесс, называемый «инфляцией» (раздуванием), особый тип ускоряющегося расширения. Но возможно, это лишь частичный ответ: чтобы она началась, похоже, Вселенная уже должна была расширяться. А что относительно наибольших масштабов за пределом наших наблюдений? Расширяются ли разные части Вселенной по-разному, так, что наша Вселенная – это всего лишь скромный инфляционный пузырь в гигантской сверхвселенной? Никто не знает. Но мы надеемся, что со временем мы сможем прийти к пониманию процесса расширения Вселенной.

ОБ АВТОРАХ:
Чарльз Линевивер (Charles H. Lineweaver) и Тамара Дэвис (Tamara M. Davis) – астрономы из австралийской обсерватории Маунт-Стромло. В начале 1990-х гг. в Калифорнийском университете в Беркли Линевивер входил в группу ученых, открывших с помощью спутника COBE флуктуации реликтового излучения. Он защитил диссертацию не только по астрофизике, но и по истории и английской литературе. Дэвис работает над созданием космической обсерватории Supernova/Acceleration Probe (Исследователь сверхновых звезд и ускорения).

ЗАМЕЧАНИЯ К СТАТЬЕ
Профессор Засов Анатолий Владимирович, физ. ф-т МГУ: Все недоразумения, с которыми спорят авторы статьи, связаны с тем, что для наглядности чаще всего рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета (причем расширение достаточно маленькой области, чтобы не учитывать разность хода времени на Земле и на далеких галактиках в земной системе отсчета). Отсюда представление и о взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения. Авторы же пишут, и пишут правильно, как все выглядит в неинерциальной (сопутствующей) системе координат, в которой обычно работают космологи, хотя в статье прямо не говорится об этом (в принципе, все расстояния и скорости зависят от выбора системы отсчета, и здесь всегда есть некий произвол). Единственно, что написано нечетко, так это то, что не определено, что же в расширяющейся Вселенной понимается под расстоянием. Сначала у авторов это скорость света, умноженная на время распространения, а далее говорится, что необходим еще учет расширения, которое удалило галактику еще больше, пока свет был в пути. Таким образом, расстояние уже понимается как скорость света, умноженная на время распространения, которое он потратил бы, если бы галактика перестала удаляться и излучила свет сейчас. В действительности все сложнее. Расстояние – величина модельно зависимая и непосредственно из наблюдений не получаемая, поэтому космологи без него прекрасно обходятся, заменяя красным смещением. Но может быть, более строгий подход здесь и неуместен.


«Для меня жизнь слишком коротка, чтобы беспокоиться о вещах мне неподвластных и, может, даже несбыточных. Вот спрашивают: «А вдруг Землю поглотит чёрная дыра, или возникнет искажение пространства-времени - это же повод для волнения?» Мой ответ: «нет», - потому что мы об этом узнаем, только когда оно достигнет нашего… нашего места в пространстве-времени. Мы получаем толчки, когда природа решает, что настало время: будь то скорость звука, скорость света, скорость электрических импульсов - мы всегда будем жертвами временной задержки между окружающей нас информацией и нашей способностью её получить »

Нил Деграсс Тайсон

Время – удивительная штука. Оно дарит нам прошлое, настоящее и будущее. Из-за времени у всего, что нас окружает, есть возраст. Например, возраст Земли составляет примерно 4,5 миллиарда лет. Примерно столько же лет назад загорелась и ближайшая к нам звезда – Солнце. Если эта цифра кажется вам умопомрачительной, не стоит забывать, что задолго до образования нашей родной Солнечной системы появилась галактика, в которой мы живем – Млечный путь. По последним оценкам ученых , возраст Млечного пути составляет 13,6 миллиардов лет. Но ведь мы точно знаем, что у галактик тоже есть прошлое, а космос просто огромен, поэтому нужно смотреть еще дальше. И это размышление неизбежно приводит нас к моменту, когда все началось – Большому Взрыву.

Эйнштейн и Вселенная

Восприятие окружающего мира людьми всегда было неоднозначным. Кто-то до сих пор не верит в существование огромной Вселенной вокруг нас, кто-то считает Землю плоской. До научного прорыва в 20 веке существовала всего пара версий происхождения мира. Приверженцы религиозных взглядов верили в божественное вмешательство и творение высшего разума, несогласных иногда сжигали. Была и другая сторона, которая верила, что окружающий нас мир, равно как и Вселенная, бесконечен.

Для многих людей все изменилось тогда, когда в 1917 году с докладом выступил Альберт Эйнштейн, представив широкой публике труд своей жизни – Общую теорию относительности. Гений 20-го века связал пространство-время с материей космоса с помощью выведенных им уравнений. В результате этого получалось, что Вселенная конечна, неизменна в размерах и имеет форму правильного цилиндра.

На заре технического прорыва опровергнуть слова Эйнштейна не мог никто, поскольку его теория была слишком сложна даже для величайших умов начала 20 века. Поскольку других вариантов не было, модель цилиндрической стационарной Вселенной была принята научным сообществом как общепринятая модель нашего мира. Впрочем, прожить она смогла всего несколько лет. После того, как физики смогли оправиться от научных трудов Эйнштейна и начали разбирать их по полочкам, параллельно с этим начали вноситься коррективы в теорию относительности и конкретные расчеты немецкого ученого.

В 1922 году в журнале «Известия физики» внезапно выходит статья российского математика Александра Фридмана, в которой тот заявляет, что Эйнштейн ошибся и наша Вселенная не стационарна. Фридман объясняет, что утверждения немецкого ученого относительно неизменности радиуса кривизны пространства – заблуждения, на самом деле радиус изменяется относительно времени. Соответственно, Вселенная должна расширяться.

Более того, здесь же Фридман привел свои предположения относительно того, как именно может расширяться Вселенная. Всего модели было три: пульсирующая Вселенная (предположение того, что Вселенная расширяется и сжимается с некоей периодичностью во времени); расширяющаяся Вселенная из массы и третья модель – расширение из точки. Поскольку в те времена других моделей не существовало, за исключением божественного вмешательства, то физики быстро взяли на заметку все три модели Фридмана и начали разрабатывать их в своем направлении.

Работа российского математика слегка уязвила Эйнштейна, и в том же году он публикует статью, в которой высказывает свои замечания относительно трудов Фридмана. В ней немецкий физик пытается доказать верность своих расчетов. Вышло это довольно неубедительно, и когда боль от удара по самооценке немного спала, Эйнштейн выпустил еще одну заметку в журнале «Известия физики», в которой сказал:

«В предыдущей заметке я подверг критике названную выше работу. Однако моя критика, как я убедился из письма Фридмана, сообщенного мне г-ном Крутковым, основывалась на ошибке в вычислениях. Я считаю результаты Фридмана правильными и проливающими новый свет ».

Ученым пришлось признать, что все три модели Фридмана появления и существования нашей Вселенной абсолютно логичны и имеют право на жизнь. Все три объясняются понятными математическими расчетами и не оставляют вопросов. Кроме одного: с чего бы Вселенной начинать расширяться?

Теория, которая изменила мир

Заявления Эйнштейна и Фридмана привели к тому, что ученое сообщество всерьез задалось вопросом происхождения Вселенной. Благодаря общей теории относительности появился шанс пролить свет на наше прошлое, и физики не преминули этим воспользоваться. Одним из ученых, попытавшимся представить модель нашего мира, стал астрофизик Жорж Леметр из Бельгии. Примечателен тот факт, что Леметр был католическим священником, но при этом занимался математикой и физикой, что для нашего времени настоящий нонсенс.

Жорж Леметр заинтересовался уравнениями Эйнштейна, и с их помощью смог вычислить, что наша Вселенная появилась в результате распада некоей суперчастицы, которая находилась вне пространства и времени до начала деления, которое можно фактически считать взрывом. При этом физики отмечают, что Леметр первым пролил свет на рождение Вселенной.

Теория взорвавшегося суператома устроила не только ученых, но также и духовенство, которое было очень недовольно современными научными открытиями, под которые приходилось придумать новые толкования Библии. Большой взрыв не вступал в существенные противоречия с религией, возможно на это повлияло воспитание самого Леметра, который посвятил свою жизнь не только науке, но и служению Богу.

22 ноября 1951 года Папа Римский Пий XII сделал заявление , что Теория большого взрыва не конфликтует с Библией и католическими догмами о возникновении мира. Православные священнослужители также заявили, что относятся к этой теории положительно. Эту теорию относительно нейтрально восприняли и приверженцы других религий, некоторые из них даже сказали, что в их священных писаниях есть упоминания о Большом Взрыве.

Впрочем, несмотря на то, что Теория Большого Взрыва на данный момент является общепринятой космологической моделью, она завела многих ученых в тупик. С одной стороны, взрыв суперчастицы отлично вписывался в логику современной физики, но с другой в результате такого взрыва могли образоваться, в основном, лишь тяжелые металлы, в частности железо. Но, как оказалось, Вселенная состоит, в основном, из сверхлегких газов – водорода и гелия. Что-то не сходилось, поэтому физики продолжили работу над теорией происхождения мира.

Изначально термина «Большой взрыв» не существовало. Леметр и другие физики предлагали лишь скучное название «динамическая эволюционирующая модель», что вызывало зевоту у студентов. Лишь в 1949 году на одной из своих лекций британский астроном и космолог Фрейд Хойл произнес:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной» .

С тех пор этот термин стал широко использоваться в научных кругах и представлении широкой общественности об устройстве Вселенной.

Откуда появились водород и гелий

Наличие легких элементов поставило физиков в тупик, и многие приверженцы Теории Большого Взрыва задались целью найти их источник. На протяжении многих лет им не удавалось добиться особых успехов, пока в 1948 году гениальный ученый Георгий Гамов из Ленинграда наконец не смог установить этот источник. Гамов был одним из учеников Фридмана, поэтому с удовольствием взялся за разработку теории своего преподавателя.

Гамов постарался представить жизнь Вселенной в обратном направлении, и отмотал время до того момента, когда она только начала расширяться. К тому времени, как известно, человечество уже открыло принципы термоядерного синтеза, поэтому теория Фридмана-Леметра получила право на жизнь. Когда Вселенная была совсем маленькой, она была очень горячей, согласно законам физики.

По мнению Гамова, спустя всего секунду после Большого взрыва, пространство новой Вселенной заполнили элементарные частицы, которые начали взаимодействовать друг с другом. В результате этого начался термоядерный синтез гелия , который смог рассчитать для Гамова математик из Одессы Ральф Ашер Альфер. Согласно подсчетам Альфера, уже спустя пять минут после Большого взрыва Вселенная была заполнена гелием на столько, что даже убежденным противникам Теории Большого Взрыва придется смириться и принять эту модель, как основную в космологии. Своими исследованиями Гамов не только открыл новые пути изучения Вселенной, но также воскресил теорию Леметра.

Несмотря на стереотипы об ученых, им нельзя отказать в романтизме. Свои исследования относительно теории Супергорячей Вселенной в момент Большого взрыва Гамов опубликовал в 1948 году в работе «Происхождение химических элементов». В качестве коллег-помощников он указал не только Ральфа Ашера Альфера, но и Ханса Бете – американского астрофизика и будущего лауреата Нобелевской премии. На обложке книги получилось: Альфер, Бете, Гамов. Ничего не напоминает?

Впрочем, несмотря на то, что труды Леметра получили вторую жизнь, физики до сих пор не могли ответить на самый волнующий вопрос: а что было до Большого Взрыва?

Попытки воскресить стационарную Вселенную Эйнштейна

Не все ученые были согласны с теорией Фридмана-Леметра, но, несмотря на это, им приходилось преподавать в университетах общепринятую космологическую модель. Например астроном Фред Хойл, который сам же и предложил термин «Большой Взрыв», на самом деле считал, что никакого взрыва не было, и посвятил свою жизнь попыткам это доказать.
Хойл стал одним из тех ученых, которые в наше время предлагают альтернативные взгляд на современный мир. Большинство физиков довольно прохладно относятся к заявлениям подобных людей, но это ничуть их не смущает.

Чтобы посрамить Гамова и его обоснования Теории Большого Взрыва, Хойл вместе с единомышленниками решили разработать свою модель происхождения Вселенной. За ее основу они взяли предложения Эйнштейна о том, что Вселенная стационарна, и внесли некоторые коррективы, предлагающие альтернативные причины расширения Вселенной.

Если приверженцы теории Леметра-Фридмана считали, что Вселенная возникла из одной единственной сверхплотной точки с бесконечно малым радиусом, то Хойл предположил, что материя образуется постоянно из точек, которые находятся между удаляющимися друг от друга галактиками. В первом случае, из одной частицы образовалась вся Вселенная, с ее бесконечным числом звезд и галактик. В другом случае, одна точка дает вещества столько, сколько достаточно для производства всего одной галактики.

Несостоятельность теории Хойла в том, что он так и не смог объяснить, откуда берется то самое вещество, которое продолжает создавать галактики, в которых находятся сотни миллиардов звезд. Фактически Фред Хойл предлагал всем поверить, что структура Вселенной возникает из ниоткуда. Несмотря на то, что многие физики пытались найти решение теории Хойла, никому так и не удалось этого сделать, и спустя пару десятилетий это предложение утратило свою актуальность.

Вопросы без ответов

На самом деле Теория Большого Взрыва также не дает нам ответы на многие вопросы. Например, в уме обычного человека не может уложиться тот факт, что вся окружающая нас материя некогда была сжата в одну точку сингулярности, которая по своим размерам намного меньше атома. И как так получилось, что эта суперчастица нагрелась до такой степени, что запустилась реакция взрыва.

До середины 20 века теория расширяющейся Вселенной так и не была подтверждена экспериментально, поэтому не имела широкого распространения в учебных заведениях. Все изменилось в 1964 году, когда двое американских астрофизиков – Арно Пензиас и Роберт Вильсон – не решили заняться исследованием радиосигналов звездного неба.

Сканируя излучение небесных тел, а именно Кассиопеи А (один из мощнейших источников радиоизлучения на звездном небе) ученые заметили какой-то посторонний шум, который постоянно мешал зафиксировать точные данные по излучению. Куда бы они ни направили свою антенну, в какое бы время суток они не начинали свои исследования – этот характерный и постоянный шум всегда преследовал их. Разозлившись до определенной степени, Пензиас и Вильсон решили изучить источник этого шума и неожиданно совершили открытие, которое изменило мир. Они открыли реликтовое излучение, которое является отголоском того самого Большого Взрыва.

Наша Вселенная остывает гораздо медленнее, чем чашка горячего чая, и реликтовое излучение свидетельствует о том, что некогда окружающая нас материя была очень горяча, и теперь охлаждается по мере расширения Вселенной. Таким образом, все теории, связанные с холодной Вселенной, остались за бортом, и на вооружение была окончательно принята Теория Большого Взрыва.

В своих трудах Георгий Гамов предполагал, что в космосе удастся обнаружить фотоны, которые существуют с момента Большого Взрыва, нужно лишь более совершенное техническое оснащение. Реликтовое излучение подтверждало все его предположения относительно существования Вселенной. Также с его помощью удалось установить, что возраст нашей Вселенной составляет примерно 14 миллиардов лет.

Как и всегда, при практическом доказательстве какой-либо теории, сразу возникает множество альтернативных мнений. Некоторые физики с насмешкой восприняли открытие реликтового излучения как свидетельство Большого Взрыва. Несмотря на то, что Пензиас и Вильсон стали лауреатами Нобелевской премии за свое историческое открытие, появилось множество несогласных с их исследованиями.

Основными аргументами в пользу несостоятельности расширения Вселенной стали несовпадения и логические ошибки. Например, взрыв равноускорил все галактики в космосе, однако вместо того, чтобы удаляться от нас, галактика Андромеды медленно, но верно приближается к Млечному Пути. Ученые предполагают, что эти две галактики столкнутся между собой всего через каких-то 4 миллиарда лет. К сожалению, человечество пока слишком молодо, чтобы ответить на этот и другие вопросы.

Теория равновесия

В наше время физики предлагают различные модели существования Вселенной. Многие из них не выдерживают даже простой критики, другие же получают право на жизнь.

В конце 20 века астрофизик из Америки Эдвард Трайон вместе со своим коллегой из Австралии Уорреном Керри предложили принципиально новую модель Вселенной, при этом сделали это независимо друг от друга. В основу своих исследований ученые положили предположение, что во Вселенной все уравновешено. Масса уничтожает энергию, и наоборот. Такой принцип стали называть принципом Нулевой Вселенной. В рамках этой Вселенной новое вещество возникает в точках сингулярности между галактиками, где притяжение и отталкивание материи уравновешено.

Теорию Нулевой Вселенной не разнесли в пух и прах потому, что спустя некоторое время ученые смогли открыть существование темной материи – загадочной субстанции, из которой почти на 27% состоит наша Вселенная. Еще 68,3% Вселенной составляет более таинственная и загадочная темная энергия.

Именно благодаря гравитационным эффектам темной энергии и приписывают ускорение расширения Вселенной. К слову, наличие темной энергии в космосе предсказал еще сам Эйнштейн, который видел, что в его уравнениях что-то не сходится, Вселенную не получалось сделать стационарной. Поэтому он ввел в уравнения космологическую постоянную – Лямбда-член, за что потом неоднократно себя винил и ненавидел.

Так получалось, что пустое в теории пространство во Вселенной все же заполнено неким особым полем, которое и приводит в действие модель Эйнштейна. В трезвом уме и согласно логике тех времен, существование такого поля было просто невозможным, но на деле немецкий физик просто не знал, как описать темную энергию.

***
Возможно, мы никогда не узнаем, как и из чего возникла наша Вселенная. Еще сложнее будет установить, что было до ее существования. Люди склонны бояться того, что не могут объяснить, поэтому не исключено, что до конца времен человечество будет верить в том числе и в божественное влияние на создание окружающего нас мира.

Наука, изучающая Вселенную, как единое целое и Метагалактику – как часть Вселенной, называется космологией . Георгий Гамов – американский физик–теоретик предполагает, что наша Вселенная, т.е. Метагалактика, родилась в горячем состоянии с температурой около 10 32 К . Эту модель Гамов назвал «Космологией большого взрыва».

Над этой моделью Гамов работал 10 лет. В 1948 году он опубликовал теорию «Большого взрыва ». Согласно теории "Большого взрыва", наша Вселенная расширяется. Расширение началось 15 млрд. лет назад из исходного очень горячего состояния. Согласно этой теории, в начальном моменте материя Вселенной находилась в состоянии физического вакуума. Физический вакуум был в неустойчивом, возбужденном состоянии, так как обладал огромной энергией: w= , где г/см 3 - плотность материи вакуума, а с – скорость света. Энергия создает огромное давление . В момент времени 10 43 с., из-за огромного давления начинается инфляция вакуума, т.е. вакуум начинает терять энергию. От момента 10 ─43 с. до 10 ─35 с материя вакуума расширяется экспоненциально и его размер увеличивается в 10 50 раза. В промежуток времени от 10 ─35 с до 10 ─32 с происходит фазовый переход , т. е. «Большой взрыв», в ходе которого вакуумное состояние материи посредством туннельного эффекта превращается в горячую плотную Вселенную с температурой 10 32 К, с материей в виде электромагнитных волн (радиоволны, инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма лучей).

Таким образом, наша Вселенная родилась в виде огненного шара, который назывался «Илем» (греч. йлем - первичная материя). Илем представлял собой нейтральный газ из электромагнитных волн и элементарных частиц.

По причине быстрого расширения, материя Вселенной охлаждается и начинается появление частиц из радиации. В начале количество частиц и античастиц было равным. Затем происходит спонтанное нарушение симметрии, это приводит к преобладанию частиц над античастицами. В первые секунды после взрыва рождаются адроны (барионы и мезоны). По истечению времени приблизительно в 1000 с после взрыва температура становится равной примерно 10 10 К и нарушается равенство концентрации протонов и нейтронов по той причине, что время жизни протонов равно 10 31 лет , а время жизни нейтронов длится около 800 с . Нейтроны распадаются и устанавливаются соотношения: 77% протонов и 22% нейтронов. В промежутке времени от 1000 с до 10000 с происходит образование легких атомов водорода и гелия. На образование ядра гелия уходят почти все нейтроны, и устанавливается следующее соотношение: 77% водорода и 22% гелия .

Интервал времени формирования Вселенной ученые делят на четыре “эры” в соответствии с преобладающей формой существования материи.


1. Эра адронов продолжается 0,0001 секунд. Адронная эра - это эра тяжелых частиц. Плотность частиц равна ρ>10 14 г/см 3 , а температура Т>10 12 К. В конце эры происходит внезапное нарушение симметрии, равенство частиц и античастиц. Причиной нарушения симметрии считается не сохранение барионного заряда. В результате, на каждый миллион (10 6) античастиц приходится миллион плюс одна (10 6 +1) частица.

2. Эра лептонов . Продолжительность эры от 0,0001с до 10с, температура от 10 10 К до 10 12 К, плотность от 10 4 до 10 14 г/см 3 . В эту эру основную роль играют легкие частицы , принимающие участие в реакциях между протонами и нейтронами. Происходят взаимные превращения протонов в нейтроны и наоборот. Постепенно накапливаются мю-мезоны, электроны, нейтрино и их античастицы. В конце эры лептонов происходит аннигиляция частиц и античастиц . Таким образом, во Вселенной античастицы исчезают, остаются частицы и излучения. Вселенная становится прозрачной для электронных нейтрино. Эти нейтрино сохранились и до нашего времени.

3. Эра радиации. Еепродолжительность 70 млн. лет, температура уменьшается от 10 10 К до 3000 К, а плотность от 10 4 до 10 -21 г/см 3 . К началу эры радиации количество протонов и нейтронов примерно равно. При уменьшении температуры количество протонов становится больше из-за распада нейтронов. В конце эры возникают условия для образования первичных атомов, в результате чего начинается новая эра - эра вещества.

4. Эра вещества. Эта эра наступила через 70 млн. лет после «Большого взрыва» с температурой около 3000К и плотностью порядка 10 4 г/см 3 . В начале эры плотность радиации и плотность вещества (частиц) была равной - около 10 −26 г/см 3 , они находились в условиях теплового равновесия. При равновесии эволюционный процесс не происходит , т.е. материя не может усложняться. Однако по мере расширения Вселенной, охлаждения вещества и охлаждения радиации происходят по разным законам. Температура вещества уменьшается обратно пропорционально квадрату размера Вселенной: Т вещества ~1/R 2 . Температура радиации уменьшается обратно пропорционально размеру Вселенной: Т радиация ~1/R. Следовательно, вещество остывает значительно быстрее . Вселенная от равновесного состояния переходит к неравновесному состоянию. Силы гравитации порождают неустойчивость , а турбулентное движение создает ударные волны . Все это приводит к фрагментации материи Вселенной. Образуются маленькие и большие газовые облака, состоящие из радиации, элементарных частиц, атомов водорода и гелия. В интервале времени, от 3 ч. до 3 миллионов лет, из маленьких облаков образуются звезды, а из больших облаков образуются целые галактики.

Механизм возникновение звёзд американский ученый Трюмплер (1930) первым объяснил тем, что газопылевое облако сжимается и нагревается, давление и температура внутри растут, замедляя сжатие. При 20 миллионов градусов начинается ядерная реакция , происходит взрыв, и возникает новая звезда. Наше Солнце проделало такой путь примерно за 1 млн. лет, около 5 млрд. лет назад.

Экология познания: Название этой статьи может показаться не слишком умной шуткой. Согласно общепринятой космологической концепции, теории Большого взрыва, наша Вселенная возникла из экстремального состояния физического вакуума, порожденного квантовой флуктуацией.

Название этой статьи может показаться не слишком умной шуткой. Согласно общепринятой космологической концепции, теории Большого взрыва, наша Вселенная возникла из экстремального состояния физического вакуума, порожденного квантовой флуктуацией. В этом состоянии не существовало ни времени, ни пространства (или они были спутаны в пространственно-временную пену), а все фундаментальные физические взаимодействия были слиты воедино. Позже они разделились и обрели самостоятельное бытие - сначала гравитация, затем сильное взаимодействие, а уже потом - слабое и электромагнитное.

Теория Большого взрыва пользуется доверием абсолютного большинства ученых, изучающих раннюю историю нашей Вселенной. Она и в самом деле объясняет очень многое и ни в чем не противоречит экспериментальным данным.

Однако недавно у нее появился конкурент в лице новой, циклической теории, основы которой разработали двое физиков экстра-класса - директор Института теоретической науки Принстонского университета Пол Стейнхардт и лауреат Максвелловской медали и престижной международной премии TED Нил Тьюрок, директор канадского Института перспективных исследований в области теоретической физики (Perimeter Institute for Theoretical Physics). С помощью профессора Стейнхардта «Популярная механика» попыталась рассказать о циклической теории и о причинах ее появления.

Момент, предшествовавший событиям, когда появилась "сначала гравитация, затем сильное взаимодействие, а уже потом - слабое и электромагнитное.", принято обозначать как нулевое время, t=0, однако это чистая условность, дань математическому формализму. Согласно стандартной теории, непрерывное течение времени началось лишь после того, как сила тяготения обрела независимость.

Этому моменту обычно приписывают величину t=10-43 с (точнее, 5,4х10-44 с), которую называют планковским временем. Современные физические теории просто не в состоянии осмысленно работать с более короткими промежутками времени (считается, что для этого нужна квантовая теория гравитации, которая пока не создана). В контексте традиционной космологии нет смысла рассуждать о том, что происходило до начального момента времени, поскольку времени в нашем понимании тогда просто не существовало.

Непременной частью стандартной космологической теории служит концепция инфляции. После окончания инфляции в свои права вступило тяготение, и Вселенная продолжила расширяться, но уже с уменьшающейся скоростью.

Такая эволюция растянулась на 9 млрд лет, после чего в дело вступило еще одно антигравитационное поле еще неизвестной природы, которое именуют темной энергией. Оно опять вывело Вселенную в режим экспоненциального расширения, который вроде бы должен сохраниться и в будущие времена. Следует отметить, что эти выводы базируются на астрофизических открытиях, сделанных в конце прошлого века, почти через 20 лет после появления инфляционной космологии.

Впервые инфляционная интерпретация Большого взрыва была предложена около 30 лет назад и с тех пор многократно шлифовалась. Эта теория позволила разрешить несколько фундаментальных проблем, с которыми не справилась предшествующая космология.

Например, она объяснила, почему мы живем во Вселенной с плоской евклидовой геометрией - в соответствии с классическими уравнениями Фридмана, именно такой она и должна сделаться при экспоненциальном расширении.

Инфляционная теория объяснила, почему космическая материя обладает зернистостью в масштабах, не превышающих сотен миллионов световых лет, а на больших дистанциях распределена равномерно. Она также дала истолкование неудачи любых попыток обнаружить магнитные монополи, очень массивные частицы с одиночным магнитным полюсом, которые, как считается, в изобилии рождались перед началом инфляции (инфляция так растянула космическое пространство, что первоначально высокая плотность монополей сократилась почти до нуля, и поэтому наши приборы не могут их обнаружить).

Вскоре после появления инфляционной модели несколько теоретиков поняли, что ее внутренняя логика не противоречит идее перманентного множественного рождения все новых и новых вселенных. В самом деле, квантовые флуктуации, подобные тем, которым мы обязаны существованием нашего мира, могут возникать в любом количестве, если для этого имеются подходящие условия.

Не исключено, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода, также способную к космологическому «деторождению». Существуют модели, в которых такие дочерние вселенные возникают непрерывно, отпочковываются от своих родительниц и находят свое собственное место. При этом вовсе не обязательно, что в таких мирах устанавливаются одни и те же физические законы.

Все эти миры «вложены» в единый пространственно-временной континуум, но разнесены в нем настолько, что никак не ощущают присутствия друг друга. В общем, концепция инфляции позволяет - более того, вынуждает! - считать, что в исполинском мегакосмосе существует множество изолированных друг от друга вселенных с различным устройством.

Физики-теоретики любят придумывать альтернативы даже самым общепринятым теориям. Появились конкуренты и у инфляционной модели Большого взрыва. Они не получили широкой поддержки, но имели и имеют своих последователей. Теория Стейнхардта и Тьюрока среди них не первая и наверняка не последняя. Однако на сегодняшний день она разработана детальней остальных и лучше объясняет наблюдаемые свойства нашего мира. Она имеет несколько версий, из которых одни базируются на теории квантовых струн и многомерных пространств, а другие полагаются на традиционную квантовую теорию поля. Первый подход дает более наглядные картинки космологических процессов, так что на нем и остановимся.

Самый продвинутый вариант теории струн известен как М-теория. Она утверждает, что физический мир имеет 11 измерений - десять пространственных и одно временное. В нем плавают пространства меньших размерностей, так называемые браны.

Наша Вселенная - просто одна из таких бран, обладающая тремя пространственными измерениями. Ее заполняют различные квантовые частицы (электроны, кварки, фотоны и т. д.), которые на самом деле явлются разомкнутыми вибрирующими струнами с единственным пространственным измерением - длиной. Концы каждой струны намертво закреплены внутри трехмерной браны, и покинуть брану струна не может. Но есть и замкнутые струны, которые могут мигрировать за пределы бран - это гравитоны, кванты поля тяготения.

Как же циклическая теория объясняет прошлое и будущее мироздания? Начнем с нынешней эпохи. Первое место сейчас принадлежит темной энергии, которая заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры. В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской.

В течение следующего триллиона лет размеры Вселенной удвоятся около ста раз и она превратится в практически пустой мир, полностью лишенный материальных структур. Рядом с нами находится еще одна трехмерная брана, отделенная от нас на ничтожное расстояние в четвертом измерении, и она тоже претерпевает аналогичное экспоненциальное растяжение и уплощение. Все это время дистанция между бранами практически не меняется.

А потом эти параллельные браны начинают сближаться. Их толкает друг к другу силовое поле, энергия которого зависит от расстояния между бранами. Сейчас плотность энергии такого поля положительна, поэтому пространство обеих бран расширяется по экспоненте, - следовательно, именно это поле и обеспечивает эффект, который объясняют наличием темной энергии!

Однако этот параметр постепенно уменьшается и через триллион лет упадет до нуля. Обе браны все равно продолжат расширяться, но уже не по экспоненте, а в очень медленном темпе. Следовательно, в нашем мире плотность частиц и излучения так и останется почти что нулевой, а геометрия - плоской.

Но окончание старой истории - лишь прелюдия к очередному циклу. Браны перемещаются навстречу друг другу и в конце концов сталкиваются. На этой стадии плотность энергии межбранового поля опускается ниже нуля, и оно начинает действовать наподобие гравитации (напомню, что у тяготения потенциальная энергия отрицательна!).

Когда браны оказываются совсем близко, межбрановое поле начинает усиливать квантовые флуктуации в каждой точке нашего мира и преобразует их в макроскопические деформации пространственной геометрии (например, за миллионную долю секунды до столкновения расчетный размер таких деформаций достигает нескольких метров). После столкновения именно в этих зонах выделяется львиная доля высвобождаемой при ударе кинетической энергии. В итоге именно там возникает больше всего горячей плазмы с температурой порядка 1023 градусов. Именно эти области становятся локальными узлами тяготения и превращаются в зародыши будущих галактик.

Такое столкновение заменяет Большой взрыв инфляционной космологии. Очень важно, что вся возникшая заново материя с положительной энергией появляется за счет накопленной отрицательной энергии межбранового поля, поэтому закон сохранения энергии не нарушается.

А как ведет себя такое поле в этот решающий момент? До столкновения плотность его энергии достигает минимума (причем отрицательного), затем начинает возрастать, а при столкновении становится нулевой. Затем браны отталкиваются друг от друга и начинают расходиться. Плотность межбрановой энергии проходит обратную эволюцию - опять делается отрицательной, нулевой, положительной.

Обогащенная материей и излучением брана сначала расширяется с падающей скоростью под тормозящим воздействием собственного тяготения, а потом вновь переходит к экспоненциальному расширению. Новый цикл заканчивается подобно прежнему - и так до бесконечности. Циклы, предшествующие нашему, происходили и в прошлом - в этой модели время непрерывно, поэтому прошлое существует и за пределами 13,7 млрд лет, прошедших после последнего обогащения нашей браны материей и излучением! Было ли у них вообще какое-то начало, теория умалчивает.

Циклическая теория по-новому объясняет свойства нашего мира. Он обладает плоской геометрией, поскольку к концу каждого цикла непомерно растягивается и лишь немного деформируется перед началом нового цикла. Квантовые флуктуации, которые становятся предшественниками галактик, возникают хаотически, но в среднем равномерно - поэтому космическое пространство заполнено сгустками материи, но на очень больших дистанциях вполне однородно. Мы не можем обнаружить магнитные монополи просто потому, что максимальная температура новорожденной плазмы не превышала 1023 К, а для возникновения таких частиц потребны много большие энергии - порядка 1027 К.

Циклическая теория существует в нескольких версиях, как и теория инфляции. Однако, по словам Пола Стейнхардта, различия между ними чисто технические и интересны лишь специалистам, общая концепция же остается неизменной: «Во-первых, в нашей теории нет никакого момента начала мира, никакой сингулярности.

Есть периодические фазы интенсивного рождения вещества и излучения, каждую из которых при желании можно называть Большим взрывом. Но любая из этих фаз знаменует не возникновение новой вселенной, а лишь переход от одного цикла к другому. И пространство, и время существуют и до, и после любого из этих катаклизмов. Поэтому вполне закономерно спросить, каким было положение дел за 10 млрд лет до последнего Большого взрыва, от которого отсчитывают историю мироздания.

Второе ключевое отличие - природа и роль темной энергии. Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений.

А наш подход гораздо лучше скреплен внутренней логикой, поскольку темная энергия у нас присутствует изначально и именно она обеспечивает чередование космологических циклов». Впрочем, как отмечает Пол Стейнхардт, есть у циклической теории и слабые места: «Нам пока не удалось убедительно описать процесс столкновения и отскока параллельных бран, имеющий место в начале каждого цикла. Прочие аспекты циклической теории разработаны куда лучше, а здесь предстоит устранить еще немало неясностей».

Но даже самые красивые теоретические модели нуждаются в опытной проверке. Можно ли подтвердить или опровергнуть циклическую космологию с помощью наблюдений? «Обе теории, и инфляционная, и циклическая, предсказывают существование реликтовых гравитационных волн, - объясняет Пол Стейнхардт. - В первом случае они возникают из первичных квантовых флуктуаций, которые в ходе инфляции размазываются по пространству и порождают периодические колебания его геометрии, - а это, согласно общей теории относительности, и есть волны тяготения.

В нашем сценарии первопричиной таких волн также служат квантовые флуктуации - те самые, что усиливаются при столкновении бран. Вычисления показали, что каждый механизм порождает волны, обладающие специфическим спектром и специфической поляризацией. Эти волны обязаны были оставить отпечатки на космическом микроволновом излучении, которое служит бесценным источником сведений о раннем космосе.

Пока такие следы обнаружить не удалось, но, скорее всего, это будет сделано в течение ближайшего десятилетия. Кроме того, физики уже думают о прямой регистрации реликтовых гравитационных волн с помощью космических аппаратов, которые появятся через два-три десятка лет».

Еще одно различие, по словам профессора Стейнхардта, состоит в распределении температур фонового микроволнового излучения: «Это излучение, приходящее из разных участков небосвода, не вполне однородно по температуре, в нем есть более и менее нагретые зоны. На том уровне точности измерений, который обеспечивает современная аппаратура, количество горячих и холодных зон примерно одинаково, что совпадает с выводами обеих теорий - и инфляционной, и циклической.

Однако эти теории предсказывают более тонкие различия между зонами. В принципе, их сможет выявить запущенная в прошлом году европейская космическая обсерватория "Планк" и другие новейшие космические аппараты. Я надеюсь, что результаты этих экспериментов помогут сделать выбор между инфляционной и циклической теориями. Но может случиться и так, что ситуация останется неопределенной и ни одна из теорий не получит однозначной экспериментальной поддержки. Ну что ж, тогда придется придумать что-нибудь новое».

Согласно инфляционной модели, Вселенная вскоре после своего рождения очень короткое время экспоненциально расширялась, многократно удваивая свои линейные размеры. Ученые полагают, что начало этого процесса совпало по времени с отделением сильного взаимодействия и произошло на временной отметке в 10-36 с.

Такое расширение (с легкой руки американского физика-теоретика Сидни Коулмена его стали называть космологической инфляцией) было крайне непродолжительным (до 10-34 с), однако увеличило линейные размеры Вселенной как минимум в 1030- 1050 раз, а возможно, что и много больше. В соответствии с большинством конкретных сценариев, инфляцию запустило антигравитационное квантовое скалярное поле, плотность энергии которого постепенно уменьшалась и в конце концов дошла до минимума.

Перед тем как это случилось, поле стало быстро осциллировать, порождая элементарные частицы. В результате к окончанию инфляционной фазы Вселенная заполнилась сверхгорячей плазмой, состоящей из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов электромагнитного излучения.

Радикальная альтернатива

1980-х годах профессор Стейнхардт внес немалый вклад в разработку стандартной теории Большого взрыва. Однако это ничуть не помешало ему искать радикальную альтернативу теории, в которую вложено столько труда. Как рассказал «Популярной механике» сам Пол Стейнхардт, гипотеза инфляции действительно раскрывает много космологических загадок, но это не означает, что нет смысла искать и другие объяснения: «Сначала мне было просто интересно попробовать разобраться в основных свойствах нашего мира, не прибегая к инфляции.

Позднее, когда я углубился в эту проблематику, я убедился, что инфляционная теория совсем не так совершенна, как утверждают ее сторонники. Когда инфляционная космология только создавалась, мы надеялись, что она объяснит переход от первоначального хаотического состояния материи к нынешней упорядоченной Вселенной. Она это и сделала - но пошла много дальше.

Внутренняя логика теории потребовала признать, что инфляция постоянно творит бесконечное число миров. В этом не было бы ничего страшного, если бы их физическое устройство копировало наше собственное, но этого как раз и не получается. Вот, скажем, с помощью инфляционной гипотезы удалось объяснить, почему мы живем в плоском евклидовом мире, но ведь большинство других вселенных заведомо не будет обладать такой же геометрией.

Это Вам будет интересно:

Короче говоря, мы строили теорию для объяснения своего собственного мира, а она вышла из-под контроля и породила бесконечное разнообразие экзотических миров. Такое положение дел перестало меня устраивать. К тому же стандартная теория не способна объяснить природу более раннего состояния, предшествовавшего эспоненциальному расширению. В этом смысле она так же неполна, как и доинфляционная космология. Наконец, она не в состоянии ничего сказать о природе темной энергии, которая уже 5 млрд лет управляет расширением нашей Вселенной». опубликовано

У всего, что нас окружает, есть прошлое: у человечества, у растительного и животного мира, у атмосферы и океанов, у суши и у самой планеты Земля. Солнце немного старше Земли, а Галактика значительно старше Солнца. Значит, и у Земли, и у Солнца есть своё прошлое. Есть оно и у Галактики, которая появилась примерно 10-12 миллиардов лет назад. Казалось бы, всё просто и ясно, но если копнуть глубже, то простое и ясное сменяется непонятным, загадочным, таинственным…

Узнав о Большом взрыве, люди задумались: а что было до него? На первый взгляд это простой вопрос, который может возникнуть у каждого. Но в действительности это, пожалуй, самый трудный вопрос и ответить на него однозначно пока не смог никто. Такое положение, конечно, не устраивало учёных, ведь они привыкли рано или поздно находить ответы на самые разные, в том числе очень сложные вопросы. Взявшись за раскрытие главной тайны Вселенной - что было до Большого взрыва? - исследователи получили не один, а довольно много ответов, весьма странных и непонятных простым людям.

Главный из ответов сводился к тому, что до Большого взрыва не было вообще ничего. Получается, что Вселенная произошла из Ничего, что Ничто породило Всё! Невозможно себе даже представить, когда и почему такое могло произойти. Любой скажет, что из Ничего нельзя не только создать Вселенную, но и смастерить табуретку. Однако учёные настаивают на своём. Они, и в их числе знаменитый физик-теоретик из Англии Стивен Хокинг, говорят, что не просто придумали, будто Вселенная получилась из Ничего, а пришли к такому выводу в результате строгих математических расчётов, в которых пока никто не обнаружил ошибку. Когда-нибудь, считают они, им удастся узнать, что такое Ничто.

Возможно, Ничто - это отсутствие не только каких-нибудь небесных тел, атомов, любых элементарных частиц, но и самого пространства и времени. Возможно также, что в таинственном Ничто отсутствовали привычные нам формы вещества. Но это была не совсем пустота, и там происходили какие-то процессы, в результате которых могли возникать маленькие взрывы и в конце концов случился Большой взрыв. Чтобы найти подтверждение своей гипотезе, исследователи пытаются создать что-то похожее на Ничто. Они построили специальные камеры, из которых удалили частицы вещества, и понизили температуру, почти достигнув холода космического пространства. Оказалось, что получившееся Ничто на самом деле представляет собой Что-то и его можно исследовать различными способами.

И всё-таки очень многие не согласны с тем, что Вселенная произошла из Ничего. Противники этой гипотезы отвечают на вопрос, что было до Большого взрыва, по-разному. Главная идея сводится к тому, что Большой взрыв - выдающееся событие в истории Вселенной, но Вселенная существовала и до него. Пока мало что можно сказать о том, каким был этот «предок» нашей Вселенной, но можно предположить, что в его истории произошло нечто такое, что привело к Большому взрыву, породившему нашу Вселенную.

Есть, конечно, и другие мнения. Может быть, до Большого взрыва существовала Вселенная, похожая на нашу, а может быть, совсем не похожая. Можно предположить также, что до нашей Вселенной были хотя бы две другие вселенные, столкновение которых привело к Большому взрыву.

По мнению некоторых исследователей, Вселенная существует вечно и в её истории Большие взрывы сменяются Большими хлопками. Такие хлопки могли бы происходить, если бы расширение Вселенной сменялось сжатием. Наконец, можно предположить, и с этим соглашаются многие, что в начальный момент истории нашей Вселенной произошло поистине невероятное событие: новорождённая Вселенная стала стремительно разбухать и раздулась до огромных размеров, порождая «пузырьки», из которых одна за другой выросли разные вселенные. Так возникла Большая Вселенная, которую иначе называют Мегавселенной или Мультивселенной. Если это верно, то подобно тому, как наша Галактика - одна из миллиардов известных нам сегодня галактик, так и наша Вселенная - одна из множества совершенно не известных нам других вселенных.

Давайте пофантазируем и представим себе, что другие вселенные - такие же, как наша, или похожи на неё, то есть состоят из множества галактик, звёзд и планет. Планет так много, что наверняка на некоторых из них существует разумная жизнь. Их обитатели достигли очень высокого уровня развития и стали властителями своей галактики. Конечно, они научились летать со своих планет к далёким звёздам, вокруг которых движутся планеты, подобно тому как наша планета движется вокруг Солнца. Постепенно они освоили много планетных систем в своей галактике, встречаясь при этом, конечно, с местными инопланетянами.

Всё может быть и совершенно иначе, если в Большой Вселенной существуют вселенные, во всём не похожие на нашу. Даже фантастам трудно представить себе, что творится в этих вселенных, а если в них есть жизнь, то какова она, на что похожа и на какие чудеса способны её обитатели.

В невероятное верится с трудом или вообще не верится. Но разве легко было науке убедить людей в том, что, например, Земля - шар? Когда-то тех, кто говорил такое, считали глупцами, потому что только глупцы могли думать, что Земля не плоская. Все были уверены, что на шаре жить невозможно, потому что живущим «внизу» пришлось бы ходить вниз головой. Невозможно было поверить и в то, что Земля вращается вокруг Солнца. Ведь мы каждый день видим, как Солнце восходит, поднимается над горизонтом, а потом заходит. Создаётся полное впечатление, что Солнце движется вокруг Земли. Но сегодня каждый знает, что всё происходит наоборот: не Солнце движется вокруг Земли, а Земля вокруг Солнца. А потом выяснилось, что Солнце мчится вокруг центра нашей Галактики, а сама Галактика, как и множество других, тоже не стоит на месте, а мчится в беспредельно расширяющейся и разлетающейся во все стороны Вселенной.

Интересно, что через несколько десятков лет будут думать люди о том, что было до Большого взрыва?

Из книги «Самый-самый Большой взрыв».



Loading...Loading...