Родословное древо. Генетика эволюционных деревьев Упражнения по пройденному материалу

Мы не единожды предлагали нашим читателям статьи, посвящённые проблемам эволюции и развития Homo sapiens . Сегодня мы обратимся к новому аспекту вопроса - генетической истории человечества и его родственников. Каковы пути эволюции с точки зрения генетики? Насколько отличаются ДНК человека и его человекообразных родственников? Кто наши предки и кем нам приходится неандерталец? Ответы на эти и другие вопросы попытались дать ведущие российские биологи.

Эволюция и филогенетическое древо

Эволюцию живых существ можно представить в виде величественного раскидистого дерева, корни которого скрыты от нас в глубине веков. Говоря о биологической эволюции, мы рассматриваем лишь надземную часть генетического древа, которая, согласно всем современным научным данным, развивалась постепенно - как растёт любое дерево. Сначала идёт ствол, потом - большие ветви, от них - более мелкие ветки, затем веточки и так далее (см. рис. 1 ).

Нам не дано видеть ветвей эволюционного древа - их составляют давным-давно исчезнувшие виды, жившие десятки и сотни миллионов лет назад. Многие из них не оставили даже следа в палеонтологической летописи, а о других нам рассказывают ископаемые находки. Реально мы наблюдаем только густую крону, где листочки - ныне существующие виды, одним из которых является биологический вид Homo sapiens , рода Человек (Homo ) семейства Люди (Hominidae ) отряда Приматы (Primates ) класса Млекопитающие (Mammalia ).

Научным методом изучения эволюции является выявление родственных (филогенетических) связей между различными организмами. В основу исследований, начиная с Карла Линнея (XVIII век), был положен принцип схожести (или несхожести) ныне существующих форм живых существ по фенотипу. Организмы, близкие по морфологическим признакам, физиологическим характеристикам, особенностям развития и др., группируются в одни веточки, другие, отличающиеся от первых, но схожие между собой, - в другие, которые затем образуют всё более крупные ветви. На рис. 1 представлено филогенетическое древо, отражающее фенотипическое сходство разных видов.

Эволюционная теория Чарлза Дарвина и филогенетические методы Эрнста Геккеля позволили современной биологии рассматривать филогенетические древа как эволюционные схемы. Согласно этим представлениям, внутри каждого вида может образоваться разновидность, наделённая новыми особенностями, позволяющими по-иному приспосабливаться к среде обитания. Так на эволюционном древе обозначается рост новой веточки. Если вновь приобретённые качества наследуются, то генетические различия усиливаются в следующих поколениях за счёт отбора свойств, обеспечивающих выживание генотипов, и накопления новых мутаций. Разновидность лучше приспосабливается к существующим условиям, фенотипически удаляясь от родительского вида Так появившаяся веточка растёт, обособляясь в новый вид.

Эволюция и ДНК

Как генетика помогла в интерпретации филогенетического древа и в понимании процесса эволюции? Дело в том, что биологическая эволюция во многом связана с изменением ДНК, представляющей собой последовательность четырех химических соединений - нуклеотидов A, T, C, G (аденин, тимин, цитозин, гуанин). Все ДНК организма называется геномом. Определённые участки ДНК, гены, кодируют белки; имеются также некодирующие участки генома. Это и есть генетический текст, определяющий как видовые признаки, общие для всего вида, так и уникальные особенности, отличающие данную особь от других представителей того же вида. ДНК любого организма подвержена мутациям, часть которых не изменяют числа нуклеотидов на данном участке ДНК, а меняют их местами. Но возможны и более сложные процессы: выпадения, вставки, удвоения нуклеотидов и перемещения фрагментов ДНК из одной части генома в другую; не исключён даже перенос ДНК между разными видами.

Мутация - редкое событие. Вероятность того, что данный нуклеотид в ДНК потомка будет изменён по сравнению с родительским, равна примерно 10 –9 . Однако для громадных промежутков времени, на протяжении которых разыгрывается эволюционный процесс, для всего генома, состоящего из огромного числа нуклеотидов (у человека их 3 млрд.), это ощутимая величина. Особи с вредными для организма нарушениями не выживают или не участвуют в размножении, и мутации далее не передаются. Полезные же изменения могут наследоваться потомками: так из поколения в поколение генетическая информация преобразуется - в этом и заключается генетическая суть процесса эволюции.

На филогенетическом древе внешне сходные друг с другом виды сгруппированы на одной ветви. Изучение ДНК ныне живущих видов позволило сопоставить близость особей разных видов на уровне эволюционных изменений, вызванных мутациями. Современная молекулярная биология позволяет сравнить соответствующие фрагменты ДНК (скажем, определённого гена) у разных видов и подсчитать число различий между ними. Филогенетические древа, построенные как по ДНК, так и по морфофизиологическим признакам, имеют очевидные соответствия: виды, далёкие друг от друга на морфофизиологическом древе, так же далеки на ДНК-филогенетическом. Таким образом, генетика доказала, что классическое филогенетическое древо отражает направление эволюционных преобразований. Более того, она показала, какие именно изменения геномов сопровождают эволюцию каждой из таксономических групп.

Человек и другие виды

Сравним человека, скажем, с бабочкой. Очевидно, что мы очень отличаемся друг от друга по внешнему облику и по составу ДНК и находимся на далёких ветвях филогенетического древа. Перейдём теперь к млекопитающим. Если сопоставить человека, скажем, с кошкой или собакой, к которым мы гораздо ближе, чем к бабочкам, то окажется, что и по ДНК человек более схож с ними. Если отправиться по ветви млекопитающих дальше, к приматам, то по мере приближения к человеку родственные черты с человекообразными - орангутаном, гориллой и шимпанзе - становятся очевидными (рис. 2 ). Больше всего человек походит на шимпанзе. Если сопоставить ДНК, окажется, что они очень близки. Генетика позволила количественно оценить сходство: человек и шимпанзе отличаются друг от друга всего одним-двумя нуклеотидами из каждых ста. То есть генетическое тождество составляет чуть ли не 99%.

Люди генетически близки друг к другу

Перейдём теперь собственно к человеку. Сопоставим представителей таких далёких народов, как аборигены Океании и европейцы, или сравним лица всем известных людей. Очевидно, что они разные, но насколько?

Сумел бы прилетевший на Землю инопланетянин отличить нас друг от друга, или мы все показались бы ему на одно лицо? Ведь случайному посетителю зоопарка все мартышки кажутся одинаковыми, а человеку, работающими с ними, - абсолютно разными. Конечно, неандерталец имеет мало общего с современным человеком, но стоит «одеть» его в костюм и шляпу, он становится одним из нас. Автор этой статьи на лекции по теории эволюции для школьников спросил, кто изображён на рисунке. И тут же один из ребят воскликнул в радостной догадке: «Так это же вы!»

Если сравнить ДНК разных людей, то выяснится, что они отличаются друг от друга лишь на 0,1%, то есть только каждый тысячный нуклеотид у нас разный, а остальные 99,9% совпадают. Более того, если сопоставить всё разнообразие ДНК представителей самых разных рас и народов, то окажется, что люди отличаются гораздо меньше, чем шимпанзе в одном стаде. Так что гипотетический инопланетянин сначала научится отличать друг от друга шимпанзе, а лишь затем - людей.

Много это или мало - 99,9% сходства и 0,1% различий. Проведём простые подсчёты. ДНК человека содержит около 3 млрд. пар нуклеотидов, примерно три миллиона из них у каждого из нас разнятся. Этого достаточно, чтобы утверждать, что не существует людей, генетически тождественных друг другу. Даже ДНК близнецов могут отличаться вследствие мутаций. Правда, большинство различий приходится на молчащие участки ДНК, и потому основные гены у нас во многом идентичны. Рассмотрим, например, молекулу гемоглобина, играющую ключевую роль в транспортировке кислорода из лёгких в клетки организма. Состав данной молекулы у всех абсолютно одинаков. Конечно, единичные отклонения возможны, но все они сопровождаются серьёзной патологией, поскольку мутация хотя бы одной аминокислоты в сложной молекуле гемоглобина изменяет её конфигурацию, резко нарушая способность удерживать кислород и снабжать им организм. Подобным же образом у всех людей совпадает множество других белков и кодирующих их генов.

Часть нуклеотидов, отличающих нас друг от друга, наделяет людей рядом признаков, определяющих группы крови, телосложение, цвет кожи, поведение и др. и позволяющих приспосабливаться к меняющимся условиям жизни. Однако большинство различий не связано напрямую с приспособительными функциями организма, их эволюционный ход определяется скоростью мутационного процесса, что позволяет проследить пути эволюции человека и его расселения по земному шару.

Предки человека

Так почему же особи шимпанзе больше отличаются, чем люди? Почему мы так похожи друг на друга генетически? Откуда мы и кто наш предок? Последний вопрос до сих пор остаётся спорным, хотя археологические находки последних десятилетий и исследования ДНК приблизили нас к пониманию этого. Шимпанзе имеет длительную историю развития, в ходе которого выработалось значительное генетическое разнообразие. Эволюционная же история человека слишком коротка для накопления серьёзных различий. Обратимся теперь к деталям нашего прошлого.

5–7 млн. лет назад от общего предка человека и шимпанзе отделилась ветвь, давшая начало древним обезьяно-людям, переходящим к прямохождению. Обитали они в Южной Африке, где их останки и были найдены; отсюда и их название - австралопитеки (т. е. обезьяны из Южного полушария), род Australopithecus . Одна из ветвей дала начало роду Человек - Homo . До середины 90-х г. древнейшим известным предком современного человека считался афарский австралопитек, A. afarensis , живший 3–4 млн. лет назад. К этому виду относится знаменитая Люси, найденная в 1974 г. в Эфиопии. Ряд палеоантропологов полагают, что древнейшим прародителем современного человека являлся другой вид австралопитека - рамидус, A. ramidus , чьи останки, насчитывающие 4,5 млн. лет, также были обнаружены в Эфиопии.

Первый известный нам представитель рода Человек появился более 2 млн. лет назад. Это был Homo habilis - Человек умелый, живший в Восточной и Южной Африке. Потом его сменил Homo erectus - Человек прямоходящий, следы которого были найдены в Африке и Евразии - им 1,7 млн. лет. К этому виду принадлежит азиатский синантроп, или пекинский человек, питекантроп, или яванский человек, обнаруженный в Океании, и древний «европеец» - гейдельбергский человек. Самым поздним находкам - 250 тыс. лет. Антропологи сходятся во мнении, что Homo erectus распространился далеко за пределы Африки путём миграций.

Первые представители Homo sapiens (т.н. архаичные люди) являющиеся потомками Homo erectus , появились более 500 тысяч лет назад и отличались по сложению от человека современного типа. Их кости были обнаружены и в Африке, и в Европе, и в Азии. И поэтому возникает вопрос: а где же возник современный человек? В настоящее время существуют две основные гипотезы: полифилетическая (или мультирегиональная) и монофилетическая.

Согласно мультирегиональной гипотезе (рис. 3 ), люди разных рас имеют различное происхождение: каждая возникла на своём континенте от отдельного представителя вида Homo erectus . При этом предковые расы составляли единую популяционную систему и, мигрируя, обменивались генами. Монофилетическая же гипотеза утверждает, что все люди имеют общее происхождение, и Homo sapiens , как и Homo erectus , возник в Африке, а затем расселился оттуда по всем континентам.

Сторонники обеих гипотез не сомневаются в происхождении человека от Homo erectus , но расходятся в вопросе о времени его возникновения. Согласно мультирегиональной гипотезе, возраст современного человека более миллиона лет, а по монофилетической версии - около 500 тыс. Однако ни антропологи, ни археологи не смогли поставить точку в этом споре. Коренной перелом в решении проблемы возникновения человека, его расселения по континентам и возникновения рас внесли исследования ДНК.

ДНК и восстановление истории человечества

Историю популяций человека можно проследить, сравнивая представителей разных рас и народов по тем фрагментам ДНК, по которым различия между индивидами гораздо более выражены, чем в среднем по геному. Такие фрагменты называют ДНК-маркёрами. Зная скорость, с которой происходят мутации, и определяя количественную меру различий между геномом людей из разных популяций, вычисляют время их отделения от общей предковой линии. Продвигаясь назад от генома современного человека, можно построить филогенетическое древо Homo sapiens . Оно позволяет делать определённые выводы о генетической истории человечества.

Для исследования используют разные типы ДНК-маркёров. Следует отметить ДНК митохондрий (мтДНК) и Y-хромосомы (Y-ДНК), поскольку они позволяют проследить генетическую историю человечества отдельно по женской и мужской линиям. Первая передаётся только по материнской линии, так как митохондрии находятся в цитоплазме клетки, а цитоплазма потомка (зиготы) определяется цитоплазмой яйцеклетки. Если два человека имеют общего предка женского пола, то различия между их мтДНК покажут, сколько поколений отделяет их от жившей столетия или тысячелетия назад общей прабабушки. Изучение Y-ДНК позволяет проследить эволюционные траектории по отцовской линии, поскольку Y-хромосома передается только по мужской линии. Изучение остальной, аутосомной части генома, которая сосредоточена в хромосомах, наследуется по обеим линиям и в которой представлена большая часть генома человека, также чрезвычайно важно, ибо даёт маркёры для изучения комбинативной изменчивости, одновременно привносимой и с отцовской, и с материнской сторон.

Первое исследование такого рода было проведено с использованием митохондриальной ДНК. Сравнивая данные аборигенов всех континентов, учёные обнаружили, что разнообразие мтДНК выше всего в Южной Африке. Более того, там были обнаружены такие типы, которые нигде больше не встречались. Они оценивались по нуклеотидному составу как наиболее древние. Митохондриальные ДНК населения других континентов были менее разнообразны, их сравнение с мтДНК аборигенов Южной Африки показало, что они возникли как мутационные изменения африканских типов в ходе распространения человечества за пределы Африки.

Изучение географического распределения типов ДНК-маркёров и анализ их мутационных взаимосвязей позволили доказать справедливость монофилетической гипотезы (рис. 4 ). Более того, их изучение помогает реконструировать миграционные события не только далёких тысячелетий, но и последних веков. Например, эпоха великих географических открытий ХIV-XVI вв. способствовала развитию контактов с неведомыми ранее жителями отдалённых земель. На кораблях были только мужчины, и сейчас генетические исследования аборигенных народов Африки, Океании и Америки показывают присутствие в их ДНК значительной доли типов Y-хромосомы, характерных для европейцев.

«Митохондриальная Ева» и «Y-хромосомный Адам»

По степени разнообразия ДНК-маркёров можно установить, от какого предкового типа и когда они произошли. Более того, поскольку различные типы мтДНК не рекомбинируют, т. е. не обмениваются между собой фрагментами в процессе образования половых клеток, то вероятностный анализ показывает, что все ныне существующие типы мтДНК сводятся в далёком прошлом к одному-единственному прототипу. Почему это происходит? Допустим, существовала небольшая прапопуляция. Если одни женщины в ней имели больше детей, чем другие, то в следующем поколении именно их мтДНК будет встречаться чаще. Их дочери и внучки тоже имели детей, унаследовавшх мтДНК своих предков. При этом случайным образом возникают мутации. Так развивается стохастический процесс в передаче типов мтДНК, в результате чего из поколения в поколение одни типы мтДНК увеличивают свою представительность в популяции, другие - уменьшают.

Согласно теории стохастических процессов, когда-нибудь в популяции останутся потомки только одной мтДНК - от некой единственной женщины, образно именуемой «митохондриальной Евой». Но и её соплеменницы внесли свой вклад в генофонд отдалённых потомков, поскольку наш геном содержит не только митохондриальную ДНК. Длина мтДНК лишь около 16,5 тыс. нуклеотидов, что ничтожно мало по сравнению с 3 млрд. нуклеотидов ДНК хромосом, основная часть которых представлена 22 аутосомами и X-хромосомой, где комбинируется наследственность по обеим линиям, женской и мужской. Из-за многочисленных мутаций мтДНК ныне живущих людей отличается от данных «Евы», возраст которой (т. е. точки соединения всех типов мтДНК в прошлом) примерно 200 тысяч лет. Аналогичная ситуация и с Y-хромосомой. Большая часть её не рекомбинирует, и изменчивость ДНК в ней подчиняется тем же стохастическим процессам, что и мтДНК. При этом говорят о «Y-хромосомном Адаме». Он оказался гораздо моложе «мтЕвы». Объяснение тому - меньшая, т. н. эффективная численность мужчин на протяжении истории человечества из-за их большей смертности и нередкого отстранения от процесса размножения.

Неандертальский человек - наш прародитель или двоюродный дядя? Дополнительные сведения о нашей родословной были получены при сравнении митохондриальных ДНК современного человека и неандертальца. Более ста лет, с тех пор как в Германии впервые были найдены останки нашего древнего родственника, шли дискуссии о том, кем он нам приходится. Исходя из особенностей строения скелета неандертальца и его географической распространённости, одни учёные считали его нашим прародителем, т. е. линией Homo sapiens , развитие которой привело к человеку современного анатомического типа. Другие детали позволяли считать его независимой эволюционной ветвью, подвидом Homo sapiens , имеющим общего с нами предка, т. е как бы двоюродным дядей. Эти два подвида получили зоологическое название Homo sapiens neanderthalensis и Homo sapiens sapiens .

Учёным удалось прочитать часть вариабельного (контрольного) участка митохондриальной ДНК двух неандертальцев. Первый был найден в Фельдховеровской пещере в Германии, чуть позже был прочитан генетический текст мтДНК неандертальца-ребёнка, обнаруженного на Северном Кавказе в Мезмайской пещере. При сравнении наиболее изменчивых фрагментов мтДНК современного человека и неандертальца были найдены существенные различия: они отличались друг от друга в среднем по 27 нуклеотидным позициям из 370 исследованных. Если сравнить митохондриальные ДНК двух современных людей, то средняя разница будет равна лишь 8 нуклеотидам. Эти расчёты показывают, что наш общий с неандертальцем предок жил примерно 500–700 тыс. лет назад.

Анализ ДНК позволил заключить, что обмен генами между человеком и неандертальцем не происходил или был ничтожно мал. Вероятнее всего, это совершенно отдельные, параллельные эволюционные ветви, произошедшие от общего предка. Хотя для окончательного вывода нужны дополнительные исследования ДНК. Так что неандерталец нам, похоже, эволюционный «дядя». Приблизительно 300–400 тыс. лет назад произошло окончательное разделение двух ветвей. Неандертальцы первыми расселились по Европе и Азии, затем туда пришли люди современного типа (т.н. кроманьонский человек), и они довольно долго сосуществовали на одной территории. Но около 30 тыс. лет назад неандертальский человек исчез, никаких его следов в более поздних археологических слоях найдено не было. Возможно, он не выдержал конкуренции и был вытеснен и истреблён своим более умным и хитрым родственником, а может быть, существовали и иные причины гибели неандертальцев.

Эволюция популяций и рас


Рис. 6. Эволюционное древо популяций человека, по данным о ДНК-маркёрах. Видно, что первично развитие и отделение друг от друга популяций началось в Африке в среднем около 100 тыс. лет назад. Затем одна ветвь вышла из Африки и стала делиться на континентальные ветви. Стрелками указано минимальное время, прошедшее между отделением эволюционных ветвей. Следует иметь в виду, что отделение ветви не означает ещё физического присутствия популяций в этом регионе. Например, ветвь, ведущая от азиатских популяций к американским индейцам, показывает, когда эта ветвь отделилась, но нужно было ещё время, за которое отделившиеся группы достигнут Берингии и перейдут пролив (по: Zhivotovsky et al., 2003).

Изучая разнообразие ДНК современных народов, можно оценить численность той прапопуляции, от которой, согласно гипотезе африканского происхождения, произошло всё человечество. Она была невелика - порядка нескольких тысяч. Сопоставляя ДНК-маркёры аборигенов Южной Африки, можно сказать, что примерно 70–150 тыс. лет назад началась интенсивная дифференциация и сложные демографические процессы, сопровождающиеся возникновением разнообразных популяций в пределах Африки. Затем, 50–100 тыс. лет назад, волны переселенцев стали выплёскиваться за пределы Африки и растекаться по другим континентам, что отразилось на своеобразной структуре ДНК-древа (рис. 6 ).

Исследуя современное население Европы, Азии, Океании, Северной и Южной Америки и зная особенности и скорость мутирования в изучаемых ДНК-маркёрах, можно с определённой степенью точности проследить пути и время миграций людей из Африки. Удивительно то, что генетические данные подтверждаются археологическими находками. Например, структура ДНК свидетельствует о том, что человек появился в Австралии и Новой Гвинее 50–60 тыс. лет назад. Анализ состава химических элементов артефактов указывает на тот же период. В Центральную и Юго-Восточную Азию люди пришли примерно 70 тыс. лет назад, заселение Европы произошло позже, 35–40 тыс. лет назад. Время освоения Америки до сих пор не определено, известно лишь, что люди появились там гораздо позже, чем на других континентах, - от 15 до 35 тыс. лет назад.


Рис. 7. Подразделение этнических группировок по географическим районам, осуществлённое по ДНК-маркёрам. Каждая точка представляет собой выборку индивидов определённой этнической группы из данного географического региона, охарактеризованным по четыремстам аутосомным ДНК-маркёрам. Левый и правый рисунки представляют собой разные проекции многомерного пространства различий между выборками. В каждом из регионов прослеживается группировка этнических групп общего происхождения, однако различия между ними уже не столь яркие, как между регионами (по: Zhivotovsky et al., 2003).

Как возникли современные расы человека и отличаются ли они друг от друга по ДНК? В течение десятков тысяч лет шли процессы миграций и адаптации человека к местным условиям. Допустим, группа людей пришла в Юго-Восточную Азию и осела там на много поколений. Потом часть мигрировала дальше, образуя новую локальную популяцию, которая, однако, имеет общую историю и общих предков с родительской группой, а потому их ДНК более сходны между собой, чем с жителями других континентов. Действительно, население разных материков эволюционно гораздо дальше от общей предковой группы, чем соседние популяции, близкие по родственным связям и демографической истории. За то время, что прошло со времени отделения от общих прародителей, их ДНК стали отличаться друг от друга за счёт накапливающихся в чреде поколений мутаций. Генетические различия между людьми с разных материков мы называем сегодня расовыми признаками. Изучая десятки и сотни ДНК-маркёров, можно почти стопроцентно идентифицировать расу (рис. 7 ). Чтобы достоверно определить этническую принадлежность индивида в пределах расы и крупного географического региона, потребуются тысячи ДНК-маркёров. А в зонах контакта разных рас и этнических групп это сделать практически невозможно из-за смешения генофондов.

Но генетически мы все вышли из одного гнезда, причём сравнительно недавно в масштабах эволюции (рис. 6 ).

Дальнейшее развитие рас шло независимо друг от друга: люди адаптировались к климато-географическим условиям, типу питания и ландшафта, складывались язык и культура. Но на формирование народов влияли не только процессы разделения популяций. Новые этносы могли образоваться при смешении групп разной расовой и языковой принадлежности. При этом возникала генетически разнородная этническая общность с единым типом культуры и общим языком. Поэтому сейчас всё большую актуальность приобретают исследования, связанные с изучением генофонда, т. е. всего разнообразия ДНК в популяциях, генетической истории населения отдельных регионов, расово-этнических групп, родословной современных этносов.

Контакт этносов

Особый интерес с этой точки зрения представляет Волго-Уральский регион - в силу особенностей этнической истории населяющих его народов. Здесь встретились две волны расселения, две расы: европеоидная и монголоидная. Следы этого события хранит ДНК проживающих здесь народов (рис. 8 ). Исследования митохондриальной ДНК и Y-хромосомы позволили рассчитать время формирования народов, заселивших впоследствии данный регион. Это произошло примерно 40–50 тыс. лет назад, что соответствует времени появления современного человека на европейском континенте в эпоху верхнего палеолита.

Сравнительный анализ мтДНК 18 народностей Евразии, относящихся к тюркской ветви алтайской языковой семьи, позволил установить западно-восточный градиент увеличения частоты азиатских типов мтДНК на пространстве 8 тыс. км: от 1% у гагаузов из Молдавии до 95–99% у якутов и долган. Соответственно, европеоидные черты наиболее свойственны жителям Западной Евразии, а наименее - населению Восточной Сибири. Народы Волго-Уральского региона, а также узбеки и казахи, т. е. те, кто живёт на границе между Европой и Азией, занимают промежуточное положение. Изучение аутосомных ДНК-маркёров показало наличие в генофонде народов Волго-Уральского региона значительной доли европеоидных черт - от 50 до 90%. Таким образом, оказавшись на границе между Европой и Азией, эти народы сохранили следы смешения двух рас, пришедших одна - с Востока, а другая - с Запада. Кроме того, оказалось, что сходство языков играет меньшую роль, чем географическая близость популяций. Если, например, русские из Рязанской и Курской областей имеют только 2–3% монголоидных типов мтДНК, то русские, проживающие на границе Европы и Азии, имеют их уже 10–12%. Это объясняется их смешением с тюркоязычными народами на территории Волго-Уральского региона.

Таким образом, ДНК какого-либо индивида не даёт возможности определить его национальность, но позволяет выяснить, какого типа у него мтДНК или Y-хромосома: скажем, монголоидной или европеоидной линии. У русских Волго-Уральского региона есть ДНК-маркёры, которые характерны и для марийцев, и для мордвы, и для чувашей, и для башкир, и для татар, и для удмуртов; соответственно, марийцы имеют ДНК-маркёры, встречающиеся у других этнических групп Волго-Уральского региона, и т. д. Эти результаты показывают глубокую генетическую общность давно живущих рядом народов, хотя говорят они на непохожих языках, веруют в разных богов и отличаются культурными традициями.

Все люди - генетические кузены и кузины

Мы все генетически чрезвычайно схожи. Нас отличает друг от друга ряд признаков, которым мы склонны придавать чересчур большое значение (рост, цвет кожи, форма головы и др.), но как они ничтожны в сравнении с нашим почти стопроцентным (99,9%) генетическим сходством! Мы сформировались под влиянием не только генов, но и окружающих нас людей и явлений, причём в становлении личности среда играет неизмеримо большую роль, чем наследственные особенности. Мы все - одна большая генетическая семья, живущая на общей планете. И все распри между людьми возникают на бытовой почве: из-за несоблюдения элементарных норм общежития народов, неуважения к ценностям, особенностям и кажущимся странностям друг друга.

Но представьте себя на необитаемом острове, куда случай забросил ещё одного человека - совсем другой расы, другого вероисповедания, со своим языком и привычками, - 99,9% генетического сходства вас тут же объединят.

Животовский Лев Анатольевич - профессор, доктор биологических наук, главный научный сотрудник Института общей генетики им. Н. И. Вавилова РАН, лауреат Государственной премии РФ, лауреат премии в области эволюционной биологии РАН, приглашённый старший учёный Стэнфордского университета (Калифорния, США).

Хуснутдинова Эльза Камилевна - профессор, доктор биологических наук. Сфера научных интересов - популяционная генетика, этногенетика, медицинская генетика, автор 300 публикаций и 4 монографий.

Vadim Sharov

Vadim Sharov

Великий шведский биолог Карл Линней разделил весь природный мир на три царства: минералы, растений и животных; отношения между отдельными видами он не учитывал. Столетие спустя Дарвин опубликовал «Происхождение видов», и картина начала усложняться. Наконец, в 1969 г. в журналеScience вышла эколога Роберта Уиттекера, и его концепция царств живой природы на полвека стала канонической: простейшие прокариоты, затем одноклеточные эукариоты, а надо всем этим царства растений, грибов и животных. Но теперь генетические исследования поставили ее под сомнение.

От Линнея до Уиттекера

Как известно, основу современной систематики живых существ заложил великий шведский биолог Карл Линней. В своем эпохальном труде «Система Природы» (Systema Naturae, 1735) он разделил весь природный мир на три царства: минералы, растений и животных. Отношения между отдельными видами - то, как они происходили друг от друга, конкурировали, появлялись и исчезали - при этом не брались в расчет: Линней хотел всего лишь создать упорядоченную классификацию «божьих творений». До выхода «Происхождения видов» Дарвина оставалось еще 124 года.

После торжества дарвиновской теории и по мере того, как накапливались все новые знания о живых существах, картина начала усложнятся. Стало ясно, что грибы стоят особняком от животных и растений. Кроме того, были изучены одноклеточные животные - как имеющие в своих клетках ядро (эукариоты), так и лишенные его (прокариоты). Всем им тоже нужно было найти места на эволюционном древе.

В результате, в 1969 г. эколог Роберт Уиттекер (Robert Whittaker), обобщив и несколько упростив собранные своими предшественниками данные, предложил в своей статье в журналеScience новую концепцию царств живой природы (камни биологов, естественно, уже не интересовали):


Как мы видим, на схеме Уиттекера основание «ствола» эволюционного древа представляют собой простейшие прокариоты (Monera ), верхушку - царство одноклеточных эукариот (Protista ), а венчают всю конструкцию три мощных ветви - царства растений (Plantae ), грибов (Fungi ) и животных (Animalia ). Именно эта схема стала канонической на многие десятилетия и вошла в учебники, по которым учились мы с вами.

Экология и генетика

Схема Уиттекера не случайно снискала такое широкое признание - она проста, удобна и, как тогда казалось, хорошо согласуется с фундаментальными принципами существования живой материи.

Например, с точки зрения экологии (мы не зря упомянули, что Уиттекер был экологом) все живые существа по типу питания делятся на три типа. Растения-продуценты занимаются тем, что продуцируют, то есть создают биомассу с помощью фотосинтеза, вдыхая на солнечном свету углекислый газ и выделяя кислород. Животные-консументы не создают, а только потребляют эту созданную растениями биомассу. Причем собственно траву едят только консументы 1-го порядка (травоядные), консументы 2-го порядка (хищники) едят консументов 1-го порядка, и так далее, выше по пищевой цепочке. Наконец, грибы - редуценты, они разлагают биомассу на более простые соединения, чтобы снова включить ее в круговорот. Простое эволюционное древо как раз и отражало историческое разделение живых существ в соответствии с этими тремя стратегиями.

Первые данные генетических исследований тоже, казалось бы, подтверждали правильность схемы Уиттекера. Сравнение вариаций одного гена, кодирующего одну из частей рибосомной РНК у разных живых существ давало схожую картину с тремя мощными ветвями - растениями, животными и грибами - наверху и одноклеточными внизу.

Но что-то пошло не так…

Однако генетический анализ показал другое. Оказалось, что некоторые митохондриальные гены присутствуют в клетках лямблий и трихомонад. Посмотрев внимательнее в электронные микроскопы, исследователи заметили там и рудименты самих митохондрий - крошечные редуцированные пузырьки, которые невозможно заметить, если не знаешь, что искать.

Одним словом, выяснилось, что старое эволюционное древо «по Уиттекеру» ложно трактует родственные отношения между живыми существами, которые на проверку оказались гораздо более сложными. Чтобы отразить современные уточненные представления об этом, биологи недавно «нарисовали» новое, более сложное эволюционное древо, в котором вместо царств главную роль играют супергруппы, а животные (включая людей) оказываются ближе к одноклеточным хоанофлагеллятам, чем к другим многоклеточным организмам. Об этой новой схеме мы расскажем во второй части статьи.


Vadim Sharov

Новое уточненное эволюционное древо животного царства, основанное на анализе рекордного числа генов и типов животных, позволило разрешить многие спорные вопросы эволюции и систематики. Подтвердилась теория, согласно которой разделение на первичноротых и вторичноротых произошло еще до того, как у животных сформировался цело м (вторичная полость тела). Первичноротые подразделяются на две четкие эволюционные линии: Lophotrochozoa (плоские и кольчатые черви, моллюски, брахиоподы, немертины) и Ecdysozoa (круглые и головохоботные черви, членистоногие, онихофоры, тихоходки).

Вплоть до последней четверти XX века биологи реконструировали эволюционную историю животных преимущественно на основе данных сравнительной анатомии, эмбриологии и палеонтологии. Затем к этому списку добавились молекулярные данные, самыми важными из которых являются нуклеотидные последовательности ДНК. Эволюционные реконструкции («деревья»), основанные на молекулярных данных, не всегда совпадали со старыми «классическими» деревьями. Это приводило к бурным спорам среди зоологов.

Поначалу многие придерживались мнения, что старые проверенные методы надежнее новомодных молекулярных. Но постепенно чаша весов склонилась в другую сторону, и сегодня большинство специалистов считает, что молекулярные данные в принципе позволяют гораздо более точно реконструировать пути эволюции животных, чем морфологические и эмбриологические признаки. В России, правда, до сих пор многие не согласны с этим, но на Западе таких «ретроградов», не доверяющих молекулярным реконструкциям, осталось очень мало.

Молекулярные «признаки» (последовательности нуклеотидов) имеют два важных преимущества по сравнению с морфологическими. Во-первых, их просто гораздо больше. Фактически каждый нуклеотид в хромосоме можно рассматривать как отдельный признак - и таким образом получать деревья, основанные на многих сотнях и тысячах признаков, тогда как число морфологических признаков, пригодных для филогенетического (эволюционного) анализа, обычно ограничивается несколькими десятками. Во-вторых, большинство морфологических признаков непосредственно влияют на жизнеспособность организма, тогда как замены многих нуклеотидов являются нейтральными (безразличными). Морфологическое сходство не обязательно свидетельствует о родстве - оно может развиться и у неродственных организмов под воздействием естественного отбора в сходных условиях обитания (это явление называют конвергенцией). Конвергентное возникновение сходных нуклеотидных последовательностей гораздо менее вероятно.

Проблема, однако, состоит в том, что достоверность любых эволюционных реконструкций, в том числе молекулярных, очень сильно зависит от объема и полноты исходных данных.

Главным критерием достоверности молекулярных деревьев считается их устойчивость или повторяемость. Существует несколько разных алгоритмов построения дерева на основе одного и того же массива исходных данных (например, нуклеотидных последовательностей какого-нибудь гена у нескольких разных организмов). Если применение разных алгоритмов дает одинаковый результат, это свидетельствует о его надежности. Разработаны также специальные процедуры для оценки достоверности «узлов» (точек ветвления) получающихся деревьев (см.: bootstrapping).

Первые молекулярные деревья животного царства, основанные на единичных генах и очень небольшом количестве видов, отличались низкой устойчивостью, и потому вызывали мало доверия. Очень скоро стало ясно, что чем больше генов и групп животных вовлечено в анализ, тем устойчивее и надежнее становятся результаты. Ученые, разумеется, стали изо всех сил наращивать объем используемых данных. Постепенно стала вырисовываться картина, довольно сильно отличающаяся от «классической», основанной на морфологии и эмбриологии.

Важнейшее из выявленных отличий касалось родственных отношений между основными типами двусторонне-симметричных животных (билатерий). Согласно классическим представлениям, все билатерии, имеющие целом (вторичную полость тела), происходят от общего предка и противопоставляются «доцеломическим» билатериям, таким как плоские и круглые черви. Целоматы подразделяются на первичноротых (кольчатые черви, моллюски, членистоногие и др.) и вторичноротых (хордовые, полухордовые, иглокожие). Кольчатые черви считались предками членистоногих.

Молекулярные данные, напротив, показывали, что разделение на две линии, соответствующие первично- и вторичноротым, произошло раньше, еще до того, как у билатерий появился цело м. Из этого следовало, что цело м, который специалисты по сравнительной анатомии считали надежнейшим таксономическим признаком (основой для естественной классификации), в действительности развился независимо у первичноротых и вторичноротых. Не имеющие целома круглые черви, согласно молекулярным данным, оказались близкими родственниками членистоногих (их объединили в группу «линяющих» - Ecdysozoa), а плоские черви - родней моллюсков, а также кольчатых червей, родство которых с членистоногими молекулярные данные никак не хотели подтверждать. Плоских червей (не имеющих целома), а также имеющих цело м моллюсков, кольчатых червей и ряд других типов объединили в группу Lophotrochozoa.

Все эти выводы, однако, до самого последнего времени нельзя было признать окончательными. Молекулярные деревья оставались неустойчивыми. Некоторые из них как будто подтверждали «старую» версию эволюции животных, в которой целом появился лишь однажды (эта версия получила название «целоматной теории»). Чтобы разрешить это противоречие, исследователи постепенно наращивали объем и представительность используемых молекулярных данных в надежде, что получаемые деревья в конце концов обретут устойчивость.

Группа ученых из США, Дании, Германии и Великобритании опубликовала в последнем номере журнала Nature новейший вариант молекулярного эволюционного древа животных, основанный на рекордном количестве генов (150) и групп животных. В анализе использовано 77 видов, относящихся к 21 типу животных, причем для 11 из этих типов геномные данные до сих пор отсутствовали. Многие части (узлы) получившегося дерева действительно оказались значительно более устойчивыми, чем в более ранних исследованиях такого рода.

Полученные результаты убедительно свидетельствуют против классической «целоматной теории». Самыми «примитивными» из включенных в анализ групп оказались гребневики. Билатерии сначала подразделяются на линии первично- и вторичноротых, и только потом в каждой из этих линий независимо формируется цело м. Первичноротые подразделяются на Lophotrochozoa и Ecdysozoa. Ближайшими родственниками членистоногих оказались онихофоры и тихоходки (что соответствует классическим представлениям), а также круглые черви (что совершенно не соответствует оным). Ближайшими родственниками кольчатых червей оказались не членистоногие, как считалось ранее, а брахиоподы и немертины.

Многое прояснилось, однако родственные связи некоторых групп так и остались неопределенными (их положение на новом древе оказалось неустойчивым). Эти группы не показаны на приведенном рисунке (за исключением губок). Причины неустойчивости авторы видят в том, что для одних групп они не сумели собрать достаточное количество молекулярных данных (губки, бескишечные турбеллярии, мизостомиды), а другие были представлены недостаточным количеством видов (мшанки, коловратки). Кроме того, авторы не смогли включить в анализ трихоплакса, который, судя по результатам анализа митохондриальной ДНК, является самым примитивным из современных животных.

Родословное древо (филема) -способ изображения родственных связей и эволюции организмов в виде дерева. Еще Ч. Дарвин в 1859 г. писал, что «это сравнение очень близко соответствует истине. Зеленые ветви с распускающимися почками представляют существующие виды, а ветви предшествующих лет соответствуют длинному ряду вымерших видов». Сам Дарвин дал в 1859 г. лишь схему возникновения многих видов, родов и семейств от одного общего вида-предка, но уже в 1866 г. Э. Геккель изобразил первое родословное древо всех живых существ (см. рис.). Геккель различал три основных царства живой природы - растений, протистов и животных.

Так представлял немецкий ученый XIX в. Э. Геккель родословную животных, которую он как зоолог разработал наиболее подробно и близко к действительности.

Его древо отражало уровень биологических знаний того времени, он сближал далекие по современным представлениям группы. Сейчас биологи склоняются к мысли, что жизнь вскоре после ее возникновения расщепилась на три ствола, которые называют надцарствами. Два из них известны уже давно - это организмы, не имеющие оформленного ядра (прокариоты), и ядерные организмы (эукариоты). Сравнительно недавно некоторые систематики прокариот стали разделять на два самостоятельных надцарства - настоящих бактерий (эубактерий) и архебактерий. По некоторым чертам строения и обмена веществ архебактерий оказываются близки к эукариотам. По-видимому, архебактерий сохранили больше, чем другие организмы, черты исходного праорганизма.

Эубактерий включают бактерий и группу, называвшуюся ранее синезелеными водорослями (цианобактерии). Построить их родословное древо удалось лишь в последние годы, использовав сравнительные данные по строению их рибосомных РНК.

По-видимому, ветви архебактерий, эубактерий и предков организмов с оформленным ядром - эукариот разошлись от общего ствола жизни практически одновременно.

Дальнейшая история эукариот связана, вероятно, с симбиозом - какие-то аэробные бактерии стали обитать в цитоплазме их клеток. Так могли возникнуть митохондрии. С тех пор жизнь эукариот неразрывно связана с аэробным, кислородным дыханием, лишь немногие многоядерные амебы, обитающие в бескислородных илах, потеряли его уже вторично.

Впрочем, эту теорию симбиозогенеза эукариот разделяют не все.

Второй этап симбиоза: внедрение в эукариотические клетки каких-то синезеленых организмов - предков хлоропластов - привел к возникновению хлорофиллоносных организмов - растений. Сначала это были одноклеточные зеленые водоросли, но из них возникло все разнообразие современной флоры.

Надцарство эукариот теперь обычно разделяют на три ветви - три царства - животных, растений и грибов. Но не все в этой схеме ясно. Загадочные слизевики, например, настолько далеко отстоят от всех трех царств, что, похоже, заслуживают выделения в четвертое. Споры идут и о месте в филеме простейших, одноклеточных эукариот. Ведь одни из них ближе к растениям (эвглена, вольвокс и др.), другие - к животным. Но выделить простейших в самостоятельную ветвь, как это сделал Геккель, вряд ли возможно. Слишком они разнообразны. Современные составители древ колеблются - разделить простейших по трем основным царствам эукариот или же создавать новые царства. Число основных ветвей ядерных организмов тогда возрастет чуть ли не до десятка.

Основные ветви-царства в родословном древе делятся на более мелкие - типы. О числе этих мелких ветвей, порядке их расположения, а также о времени ответвления до сих пор идут ожесточенные споры. Одних животных систематики насчитывают до 33 типов. Не все из них имели одну эволюционную судьбу: в кроне «древа жизни» имеются пышно разветвленные побеги вроде огромных типов членистоногих, моллюсков или хордовых и тоненькие веточки, представленные немногими десятками видов. Но все они в равной степени интересны систематикам-эволюционистам. Ведь родословные древа - наглядное изображение процесса филогенеза.

В настоящее время родословные древа строятся не только на основании данных морфологии, эмбриологии и палеонтологии, как во времена Геккеля и в последующие годы. Для сравнения используют данные молекулярной биологии о последовательности аминокислот в белках и нуклеотидов в РНК и ДНК. Для сравнения внутри относительно небольших и не очень древних групп, таких, как позвоночные, используют быстро меняющиеся в эволюции белки, например гемоглобин. Для анализа же событий, происшедших миллиарды лет назад, используют такие мало меняющиеся (консервативные) молекулы, как рибосомные РНК.

Эволюция не сводится только к поступательному движению вверх по “лестнице” прогресса. Ведь условия среды обитания чрезвычайно разнообразны, поэтому не обязательно все время стремиться к повышению уровня организации. Можно просто уходить от конкуренции с другими организмами, осваивая еще незанятые “ячейки” в сообществах живых организмов — экологические ниши. Этот процесс называют “дивергенцией”: близкие виды в ходе эволюции как бы “расходятся” в разные стороны, вырабатывая специальные приспособления к определенным условиям среды.

Если пытаться изобразить процесс расхождения видов по разным жизненным зонам и экологическим нишам, то ничего лучше “эволюционного древа” не придумаешь. Растущий вверх “ствол” — это и есть основное направление эволюционного прогресса млекопитающих, означающее повышение уровня их организации. А расходящиеся вбок ветви и веточки и есть не что иное, как дивергенция видов.

Сначала на стволе появляется крошечный побег: это возник новый вид, пытающий свое счастье в эволюции. Если ему повезет, он не вымрет из-за каких-либо пертурбаций: зачаточный побег не “засохнет”, а превратится в небольшую веточку. В новых благоприятных условиях, еще никем не занятых, появляется все больше и больше потомков того предково-го вида: ветка все больше ветвится, становится толще. И в конце концов оказывается, что удачливый вид-основатель “нашел” новое, весьма перспективное направление эволюции: побег превращается в то, что садоводы назвали бы “скелетной ветвью” звериного древа жизни. Так, например, около 10 миллионов лет назад какие-то из зерноядных хомяков перешли на питание травой: это оказалось настолько удачным, что их потомки — полёвки — по разнообразию и обилию многократно превзошли своих предков.

Приспосабливаясь к новой среде обитания, потомки все больше теряют сходство со своими предками: они как бы “забывают” своих пращуров, живших в иных условиях. Утрачивается сходство и с “кузенами”, причем чем дальше виды “разошлись” в ходе эволюции по разным природным зонам, тем меньше между ними сходства. Ну кто бы мог сказать, глядя на порхающих в воздухе маленьких летучих мышей и плавающих в морских водах гигантов-китов, что все они — отдаленные потомки одних и тех же наземных зверьков, более всего похожих на ныне живущих землероек?

“Эволюционное древо” прекрасно иллюстрирует не только ход исторического развития живых существ, но и устройство “Системы природы”. Оно чем-то напоминает устройство воинских частей: подобно полкам, ротам, взводам, в “Системе природы” есть разные уровни или ранги — классы, отряды, семейства и так далее. На “эволюционном древе” они соответствуют разным по “толщине” ветвям и отражают разную степень обособленности тех или иных групп животных. Говоря о животных, имеющих в системе определенный ранг, — о китообразных или тюленях, ежах или землеройках, мы можем охарактеризовать то, насколько давно отделилась и насколько далеко отошла данная ветвь от основного эволюционного ствола.

Так, если все звериное “древо” — это класс млекопитающих, то “скелетные ветви” — это отдельные отряды: например, отряд хищные, отряд парнокопытные. Они обособились, как правило, не менее 70-90 миллионов лет назад, каждый завоевал свою собственную адаптивную зону. Растущие на них более мелкие ветки — это семейства: например, в отряде хищных есть семейства медвежьих и кошачьих; в отряде парнокопытных — семейства полорогих и оленьих. Их эволюционный возраст — обычно 30-40 миллионов лет, каждое из семейств особым образом осваивает общую для отряда адаптивную зону. Например, в рацион медведей входят не только животные, но и растительные корма, а кошки питаются почти исключительно мясом.

Концевые веточки нашего “древа” — это отдельные роды: род медведей, род оленей и так далее. А они уже заканчиваются видами: бурый и белый медведи, лесной и степной коты, благородный и пятнистый олени. Возраст родов и видов млекопитающих обычно измеряется несколькими миллионами лет.

Пустынная зебра или зебра Греви, это один видов млекопитающих относящийся к лошадиному семейству. Свое название зебра получила в честь Жюля Греви – французского президента именно ему был подарен первый экземпляр этого животного. Вес этого животного достигает 430 кг, а длина всего тела может быть порядка 3 метров. Пустынная зебра это не только одна из самых…

Больше всего напоминают самых примитивных млекопитающих все те же землеройки. Эти зверьки почти ничем не примечательны, разве что своим обжорством: в сутки они съедают пищи больше, чем весят сами. Таков уж у этих крохотных созданий обмен веществ: они живут, чтобы есть. У разных видов вершины зубов окрашены по-разному. У одних землероек зубы все белые, таких…

Тропические леса Южной и Центральной Америки населяют так называемые широконосые обезьяны, которые по уровню развития стоят много выше полуобезьян. К ним относятся многочисленные игрунки, или мармозетки, — размером с белку, некоторые ярко раскрашенные (например, золотистая игрунка), некоторые с удлиненными в гриву волосами на голове или с “усами” (императорский тамарин). Их ближайшие родичи — цепкохвостые обезьяны….

Всем знакомый образ красавца оленя с огромными раскидистыми рогами на голове — верный, да не совсем. На самом деле, среди оленей и близких к ним парнокопытных животных довольно много безрогих. Одни из них — оленьки, самые архаичные представители жвачных. Так ласково-уменьшительно их называют за общее сходство с настоящими оленями и небольшие размеры: они чаще всего…

Среди усатых китов больше всего полосатиков. Свое название они получили за многочисленные продольные борозды-складки на нижней поверхности головы и передней части брюха: издали они кажутся полосами. В спокойном (сложенном) состоянии нижняя челюсть у полосатиков ненамного больше верхней. Но когда кит питается, он широко раскрывает пасть, складки расправляются и образуется огромный мешок, в который устремляются тонны…

И все-таки природа справедлива: обделяя одни свои творения цветовым зрением, она награждает их невероятной способностью чуять самые разные запахи. Взять ту же собаку: она живет в невероятно “красочном”, со множеством оттенков мире запахов, совершенно недоступном нам, людям. Для каждого животного определенный запах, присущий только ему, — это своего рода “паспорт” , опознавательная метка. Обратите внимание,…

В тундре Северной Америки живет копытное, которого, наверное, можно назвать самым мохнатым зверем на Земле, — овцебык. Столь странное название он получил за крупные размеры и вполне “баранью” голову, украшенную очень “плотно” сидящими рогами с расширенными сближенными основаниями (как у африканского буйвола). Шерсть у овцебыка действительно выдающаяся: необычайно густая, большую ее часть составляет тонкий подшерсток,…

Совсем иное дело — звери, которые рождают вполне сформировавшихся детенышей, способных проявлять известную самостоятельность чуть ли не в первые часы после рождения. Чтобы достичь такого результата, у этих животных, называемых “выводковыми”, в отличие от “птенцовых”, эмбриональное развитие столь продолжительно, что звереныш, прежде чем появиться на свет, успевает обзавестись всем необходимым для полноценной жизни. Например, у…

Эти небольшие симпатичные существа, живущие в Африке, к слонам никакого отношения не имеют. Долгое время их считали представителями насекомоядных, но в конце концов все-таки решили, что правильнее всего прыгунчиков выделить в отдельный отряд, настолько они своеобразны. А благодаря новейшим открытиям в палеонтологической летописи удалось установить, что их ближайшие родственники — никакие не насекомоядные, а грызуны…

Именно так — “четверорукими” — нередко называют наших ближайших сородичей в царстве животных. Правильно, это обезьяны с одинаково цепкими руками и ногами. А научное их название — приматы, что по латыни означает “первые”: в давние времена ученые именно приматов, за их близость к человеку, ставили первыми в Системе Природы. У настоящих приматов, как и у…



Loading...Loading...