Ртуть. Свойства ртути

Относятся к гидротермальному типу. По условиям образования выделяются следующие типы:

  1. эпитермальные и телетермальные гидротермальные месторождения, не связанные с вулканическими процессами;
  2. гидротермальные вулканогенные месторождения.

Не связанные с вулканическими процессами, имеют промышленное значение. Они приурочены к зонам глубинных региональных разломов и залегают обычно в осадочных породах (песчаниках, известняках, конгломератах), хотя известны месторождения, связанные с лиственитами. Среди ртутных руд выделяются кварц-флюоритовый, кварц-диккитовый, карбонат-киноварный, барит-киноварный минеральные типы, отличающиеся простотой состава и относительно богатым содержанием ртути (до 1-2%).

По морфологическим особенностям выделяются согласные пластообразные тела и секущие жильные и штокверковые зоны. Мощность пластообразных тел до 15-20 м, длина до нескольких километров. Мощность жил обычно незначительна - 0,1-0,3 м, длина - десятки и сотни метров. Текстуры руд вкрапленные, прожилково-вкрапленные, брекчиевые, брекчиевидные и полосчатые. Месторождения формируются из глубинных растворов в условиях умеренных глубин при температурах 50-150 °С.

К месторождениям этого типа относятся Никитовское в Донбассе, Хайдаркан в Киргизстане, Акташ в Горном Алтае, Альмаден в Испании, Идрия в Югославии. Пример месторождений в лиственитах - Нью-Альмаден в США. В России подобные месторождения известны на Чукотке.

Гидротермальные вулканогенные месторождения ртути развиты в областях современного или одновозрастного с оруденением вулканизма и четко связаны с вулканогенными породами. Среди них выделяют наземные и поверхностные газово-гидротермальные вулканические месторождения, приуроченные к вулканическим комплексам, и близповерхностные - к субвулканическим комплексам. Рудные тела сложной трубо- и грибообразной формы, ветвящиеся жилы, гнезда и линзы залегают в зонах разломов среди измененных андезитовых, трахиандезитовых и липаритовых эффузивов и туфов.

Характерными изменениями пород являются пропилитизация, серицитизация, юкварцевание, арпиллизация, опалитизация. Оруденение крайне неравномерное, не выдержанное по падению.

Руды имеют сложный минеральный состав. Наряду с киноварью встречаются метациннабарит, металлическая ртуть, реальгар, аурипигмент, самородная и др. Ртутная минерализация встречается часто совместно со свинцово-цинковой, серной и др. Среднее содержание ртути в рудах 1-1,5%.

Гидротермальные вулканогенные месторождения встречаются в Закарпатье (Боркутное, Вышковское и др.), на Камчатке, Сахалине, Чукотке (Пламенное и др.), Италии (Монте-Амьята), Мексике (Гуитцуко), США (Опалит) и др.

Газово-термальные месторождения ртути располагаются в районах современной вулканической деятельности. На вулкане Менделеева (Курильские острова) ртутное оруденение приурочено к колчеданным рудам, сложенным пиритом, марказитом, опалом, серой и другими минералами. Известно крупное месторождение, связанное с термальными источниками в США (Салфер-Бэнк, шт. Калифорния). Ртуть гидротермального происхождения присутствует в Донецкого бассейна (концентрация превышает кларк в десятки, а иногда сотни раз).

Россыпные месторождения ртути встречаются редко. Киноварь, достаточно устойчивая при выветривании, из-за хрупкости плохо выдерживает транспортировку водой, легко разрушается и истирается. Делювиальные россыпи образуются иногда вблизи коренных месторождений. Богатая делювиальная россыпь известна вблизи месторождения Нью-Альмаден (шт. Калифорния, США). Киноварь в виде обломков накапливается вместе с глинистыми частицами в коре выветривания карбонатных пород или заполняет карстовые воронки и пещеры (месторождения Лингуань, Гунчэн и др. в Китае).

В настоящее время в России Государственным балансом запасов полезных ископаемых учтено 24 месторождения ртути. Большинство из них относится к собственно ртутным (киноварным) с запасами, как правило, не более 2 тыс. т металла. Только четыре месторождения являются сравнительно крупными – Тамватнейское (14 тыс. т), Западно-Палянское (10,1 тыс. т), Чаган-Узунское (14 тыс. т), Звездочка (3 тыс. т). Качественное состояние минерально-сырьевой базы отечественной ртутной промышленности в целом оценивается как неудовлетворительное, поскольку руды большинства известных месторождений характеризуются низким содержанием ртути (существенно меньше 1%). Исключение составляют лишь руды месторождений Звездочка, Балгикакчан, Чемпуринское и Олюторское (табл. 3).

Таблица 3. Региональная структура балансовых запасов ртути в России

Субъект Федерации Месторождение Геолого-промышленный тип Доля в запасах (В + С 1 + С 2), % * Содержание Hg в руде, % **
Собственно ртутные месторождения
Алтайский край Сухонькое Карбонатный 0,6 0,24
Камчатская обл. Ляпганайское Опалитовый 3,5 0,63
Олюторское 1,7 1,05
Чемпуринское 0,7 1,07
Кемеровская обл. Куприяновское Кварц-диккитовый 0,2 0,32
Красноярский Белокаменное 2,3 0,47
Салинское 2,4 0,42
Дальнее 1,8 0,31
Каскадное 0,1 0,14
Республика Чаган-Узунское Лиственитовый 7,0 0,42
Черемшанское Карбонатный 0,1 0,50
Республика Саха Звездочка Кварц-диккитовый 6,2 1,59
Гал-Хая 1,1 0,60
Северное 0,4 1,09
Среднее 0,3 3,40
Балгикакчан 0,1 1,63
Республика Тыва Терлигхайское Полиаргиллитовый 5,1 0,22
Республика Сев. Осетия – Алания Тибское Кварц-диккитовый 1,6 0,25
Хабаровский край Ланское Полиаргиллитовый 1,2 0,52
Чукотский автономный Тамватнейское Лиственитовый 33,1 0,70

Западно-Палянское

Кварц-диккитовый 24,0 0,53
Окончание табл. 4
Ртутьсодержащие месторождения
Республика

Башкортостан

Подольское Медно-колчеданный 4,6 0,0025
Челябинская обл. Талганское 0,6 0,0059
Свердловская обл. Сафьяновское 0,2 0,0014

* Выявленные запасы ртути в России на начало 2001 г. оценивались в 45,3 тыс. т, из которых 15,6 тыс. т – запасы промышленных категорий.

** Среднее содержание ртути в рудах российских месторождений оценивается в 0,453% (среднее содержание ртути в рудах месторождений, например, Испании достигает 1,9%, Алжира – 1,75%, Киргизии – 1%).

Потенциальными производственными мощностями по выпуску первичной ртути в России располагают Акташское горно-металлургическое предприятие (до 150 т/год) и ЗАО «НПП «Кубаньцветмет» (до 25-30 т/год). Однако мелкий масштаб и низкое качество ртутных руд Сахалинского месторождения (Краснодарский край), практически полное отсутствие собственной сырьевой базы и причины организационно-финансового характера на Акташском ГМП (Республика Алтай) не дают повода надеяться на возобновление горных работ на этих объектах. Потенциально на Акташском ГПМ могут перерабатываться руды расположенного в 90 км месторождения Сукор. Известно также, что вблизи металлургического завода ЗАО «НПП «Кубаньцветмет» складировано более 7 тыс. т руды (около 6 т ртути), которую планируется переработать в ближайшие годы; еще 30 тыс. т руды (около 25 т ртути) расположено возле бывших шахт и карьера Сахалинского месторождения.

Освоение крупных Тамватнейского и Западно-Палянского месторождений (как и многих других), невозможно без значительных инвестиций, на которые – при существующей ситуации на мировом рынке ртути – рассчитывать трудно. К тому же, их разработка может негативно сказаться, например, на нерестилищах ценных пород рыб, состоянии окружающей среды и т. д. Более того, учитывая масштабы накопленных к настоящему времени в России ртутьсодержащих отходов, в освоении ртутных месторождений, нет острой необходимости, поскольку отечественная промышленность – при осуществлении определенных мероприятий – может быть обеспечена вторичной и попутной ртутью.

Так, Государственным балансом запасов полезных ископаемых учтено 3 ртутьсодержащих медно-колчеданных месторождения – Подольское (Башкортостан), Талганское (Челябинская область), Сафьяновское (Свердловская область) (см. табл. 4). В ежегодно добываемых на Сафьяновском месторождении рудах содержится до 10 т ртути. Ртуть в значительных концентрациях присутствует в рудах медно-колчеданных, полиметаллических, золотосеребряных и других типов месторождений. Однако при используемых в России технологических схемах переработки руд и концентратов цветных металлов попутная ртуть не извлекалась, как и не извлекается сейчас; существенная часть ее рассеивается в окружающей среде и, например, поступает в получаемую на некоторых металлургических заводах серную кислоту. Значительное количество ртути уходит в хвосты на обогатительных фабриках.

Как отмечалось выше, в 1980-х гг. в небольших количествах попутную ртуть получали из цинковых концентратов на Челябинском цинковом заводе. В более существенных масштабах ртуть извлекалась на Хайдарканском комбинате из сурьмяного концентрата обогатительной фабрики Анзорского комбината. По оценке, на предприятиях цветной металлургии России в год можно получать до 100 т попутной ртути. По расчетам автора этих строк, в 2000-2003 гг. с различным сырьем (главным образом с концентратами и рудами) в металлургический передел на российские заводы цветной металлургии (по выплавке цинка и черновой меди) ежегодно поступало не менее 60 т ртути.

Экспорт российской ртути

В 1992-1998 гг. Россия, как уже отмечалось, реализовала часть своих складских запасов ртути на мировом рынке. Например, в середине 1990-х гг. значительную долю испанского импорта составляла ртуть из российских складских запасов: компания «Minas de Almaden» закупала ее, рафинировала и перепродавала , в том числе и российским предприятиям. Динамика экспорта ртути Россией в страны дальнего зарубежья выглядит примерно следующим образом (табл. 4).

Таблица 4. Динамика российского экспорта ртути *

Год Экспорт ртути, тонны
1992 150
1993 535
1994 400
1995 926 **
1996 345,9 ***
1997 1000 ****
1998 70
1999 965
2000-2001 Нет данных *****

* В ежегодно издаваемых сборниках «Таможенная статистика внешней торговли Российской Федерации» прямые сведения об экспорте и импорте ртути отсутствуют.

** 120 т российской ртути поступило в США.

*** Из России в США было экспортировано 79 т, по, – 120 т ртути.

**** Ртуть поступила в Роттердам, где к маю 1998 г. ее большая часть была продана, а оставшиеся 276 т – закуплены компанией «Minas de Almaden»; по данным, из России в США поступило 120 т ртути.

***** По, в небольших объемах ртуть экспортировалась ООО «Мерком». Есть сведения, что определенное количество ртути, полученной из отходов золотодобывающей промышленности на одном из предприятий Иркутской области, в начале 2000-х гг. было продано в Китай, а Челябинский цинковый завод отправляет ртутные шламы, образующиеся при производстве цинка, на переработку в Киргизию.

Данные об импорте металлической ртути Россией единичны: в 1997 г. – 30 т, в 1998 г. – 46 т, в 1999 г. – 11 т. В 2001-2002 гг. ОАО «Термоприбор» (г. Клин Московской области) ежегодно закупало в Испании (у «Minas de Almaden») примерно по 15-20 т металлической ртути. В 2002 г. в ЗАО «НПП «Кубаньцветмет» на переработку (рафинирование) поступило 2775 кг некондиционной (черновой, отработанной) ртути из Беларуси (от УП «Белцветмет»).

Объем мировой торговли ртутью (экспорт + импорт) в 1997 г. составил 7600 т. Экспортировали ртуть 29 стран, из которых лишь в девяти выпускался первичный металл. Импортировали ртуть 53 страны, причем на Гонконг, Китай и Нидерланды приходилась почти половина ее суммарного мирового импорта (Гонконг и Нидерланды – в основном с целью перепродажи). В 1999 г. объем мировой торговли ртутью (экспорт + импорт) составил более 6128 т.

Интересно отметить, что в 1990-х гг. среди стран-экспортеров ртути была Эстония (в 1977 г. – 35 т, в 1998 – 17 т). Очевидно, что реализовывались запасы металла, либо поступившая тем или иным способом металлическая ртуть из России. Показательно, что совсем недавно в Латвии было обнаружено подпольное хранилище, в котором находилось 2,5 т ртути.

Экспорт ртути будет полностью запрещен в Евросоюзе с марта 2011 года - такое решение принял в 2008 году Совет министров ЕС по вопросам конкуренции. Это постановление, которое обязывает также государства ЕС обеспечить безопасное складирование остатков ртути, принят в целях сокращения объемов выбросов в атмосферу токсичных видов тяжелых металлов.

Ещё в 3-м тысячелетии до н.э. в лечебных целях, в качестве пигмента, косметического средства и для амальгамации золота . Следы древних разработок сохранились в ряде районов Азии, Европы , в т.ч. и на нынешней территории (Средняя ). Многие ртутные мира были открыты по следам древних работ. Во 2-й половине 19 века основными центрами ртутной промышленности были Испания , Италия и .

Сокращение производства ртути обусловлено необходимостью осуществления дорогостоящих природоохранных мероприятий, структурными сдвигами в потреблении, нерентабельностью производства. В связи со снижением цен на ртуть в 1975 создана международных ассоциация производителей ртути "ASSIMER". Повышается значение вторичной ртути.

Ртутная промышленность несоциалистических стран по объёму производства, стоимости выпускаемой продукции и числу компаний-продуцентов сравнительно мала. Почти вся добыча сосредоточена на нескольких месторождениях. Предприятия ртутной промышленности Испании, Алжира, Турции, Италии полностью или частично принадлежат государству. Производством ртути в США и Мексике владеет частный сектор. Ведущие компании по добыче руд и производству ртути: "Mines de Almaden" (Испания), "Placer AMAX" (США), "Sonarem" (), "Etibank" (). Техника и технология добычи, обогащения руд и производства ртути за рубежом незначительно отличается от принятых в CCCP. Добыча ведётся подземным и, в возрастающей степени, открытым способами.

Первое место в мировом производстве ртути принадлежит Испании, где добыча комбинированным способом осуществляется в основном на месторождении Альмаден и на соседнем, недавно открытом месторождении Энтредичо. Производственная мощность до 1 млн. т руды в год. Потребление ртути в стране незначительное, поэтому практически вся ртуть идёт на экспорт. В США добыча и производство ртути осуществляются на месторождении Мак-Дёрмитт в штате Невада. Мощность карьера 150-300 тысяч т руды в год. В Турции существуют небольшие предприятия по добыче руд — шахты "Халикёй", "Конья" и др. (их мощность 150-300 тысяч т руды в год). В число крупных поставщиков ртути на внешний рынок выдвинулся Алжир, где открытым способом разрабатывается группа месторождений в районе Аззаба (Mpa-Сма и др.).

Месторождения ртути известны более чем в 40 странах мира. Мировые ресурсы ртути оцениваются в 715 тыс т количественно учтенные запасы - в 324 тыс. т., из которых 26% сосредоточено в Испании, по 13% в Киргизии и России, 8% - в Украине, примерно по 5-6,5% - в Словакии, Словении, Китае, Алжире, Марокко, Турции. Обеспеченность запасами ртути максимального уровня ее потребления, достигнутого в 1990-е годы, составляет для мира около 80 лет. С начала 1970-х гг. из-за экологических факторов конъюнктура рынка ртути стала заметно ухудшаться. Если в начале 1970-х гг. мировое производство первичной ртути (добыча на рудниках и плавка) оценивалось на уровне 10000 т в год, то к концу 1980-х гг. оно уменьшилось более чем в два раза. Это сопровождалось снижением цен на ртуть: с 11 -12 тыс. долларов США за 1 т в 1980-1982 гг. до 4-5 тыс. долларов в 1994-1996 гг. Эксперты считают, что в ближайшие годы не произойдет резкого изменения конъюнктуры рынка ртути. В ряде отраслей ее применение будет медленно сокращаться. Однако в некоторых производствах, в силу различных причин, например, в приборостроении, электротехнике, оборонной промышленности потребление ртути, видимо, останется на прежнем уровне. Химическая промышленность ряда стран, связанная с производством хлора, каустика, ацетальдегида, винилхлорида ртутным способом, также будет оставаться важным потребителем этого металла. Такие предприятия есть и в России.

Ртуть всегда находила широкое применение в различных сферах практической, научной и культурной деятельности человека. К началу 1980-х гг. было известно свыше тысячи разнообразных областей ее применения. Вот основные из них, в которых ртуть и ее соединения в той или иной мере используются и сейчас: - химическая промышленность - производство хлора и каустика, ацетальдегида, хлорвинила, полиуретанов, ртутьорганических пестицидов, красок;

Электротехническая промышленность - производство различных ламп, реле, сухих батарей, переключателей, выпрямителей, игнитронов и др.;

Радиотехническая промышленность и приборостроение - производство контрольно-измерительных приборов (термометры, барометры, манометры, полярографы, электрометры), радио- и телеаппаратуры;

Медицина и фармацевтическая промышленность - изготовление глазных и кожных мазей, веществ бактери­цидного действия, производство витамина В, изготовление зубных пломб (амальгамы серебра и меди);

Сельское хозяйство (ядохимикаты, антисептики);

Машиностроение и вакуумная техника - производство вакуумных насосов и др.;

Военное дело - изготовление детонаторов, управляемых снарядов;

Металлургия - получение сверхчистых металлов, точное литье, амальгамирование благородных металлов;

Горное дело (гремучая ртуть);

Лабораторная практика и аналитическая химия.

В энергетике ртуть использовалась как рабочее тело в мощных бинарных установках промышленного типа, где для генерации электроэнергии на первых ступенях применялись ртутно-паровые турбины, а также в ядерных реакторах для отвода тепла. Элементарную ртуть используют в процессах разделения изотопов лития. Ртутью иногда легируют другие металлы. Небольшие ее добавки увеличивают твердость сплава свинца со щелочноземельными металлами. Ее даже использовали при паянии. Цианид ртути применяли в производстве антисептического мыла.

Http://www.ecotrom.ru/p13.htm

Ртуть

РТУТЬ -и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо-белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный).

Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка.

ртуть

(лат. Hydrargyrum), химический элемент II группы периодической системы. Серебристый жидкий металл (отсюда латинское название; от греческого hýdōr - вода и árgyros - серебро). Плотность при 20°C 13,546 г/см 3 (тяжелее всех известных жидкостей), t пл –38,87°C, t кип 356,58°C. Пары ртути при высокой температуре и при электрическом разряде излучают голубовато-зелёный свет, богатый ультрафиолетовыми лучами. Химически стойка. Основной минерал - киноварь HgS; встречается также ртуть самородная. Используется при изготовлении термометров, манометров, газоразрядных приборов, в производстве хлора и гидроксида натрия (как катод). Сплавы ртути с металлами - амальгамы. Ртуть и многие её соединения ядовиты.

РТУТЬ

РТУ́ТЬ (лат. Hydrargyrum), Hg (читается «гидраргирум»), химический элемент с атомным номером 80, атомная масса 200,59.
Природная ртуть состоит из смеси семи стабильных нуклидов: 196 Hg (содержание 0,146% по массе), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg (13,22%), 202 Hg (29,80%) и 204 Hg (6,85%). Радиус атома ртути 0,155 нм. Радиус иона Hg + - 0,111 нм (координационное число 3), 0,133 нм (координационное число 6), иона Hg 2+ - 0,083 нм (координационное число 2), 0,110 нм (координационное число 4), 0,116 нм (координационное число 6) или 0,128 нм (координационное число 8). Энергии последовательной ионизации нейтрального атома ртути равны 10,438, 18,756 и 34,2 эВ. Расположена во IIВ группе, 6 периода периодической системы. Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 10 6s 2 . В соединениях проявляет степени окисления +1 и +2. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
История открытия
Ртуть известна человечеству с древнейших времен. Обжиг киновари (см. КИНОВАРЬ) HgS, приводящий к получению жидкой ртути, использовали еще в 5 в. до н. э. в Междуречье (см. МЕСОПОТАМИЯ) . Использование киновари и жидкой ртути описано в древних документах Китая, Ближнего Востока. Первое подробное описание получения ртути из киновари описано Теофрастом (см. ТЕОФРАСТ) около 300 лет до н. э.
В древности ртуть использовали для добычи золота (см. ЗОЛОТО (химический элемент)) из золотых руд. Этот способ основан на ее способности растворять многие металлы, образуя жидкие или легкоплавкие амальгамы (см. АМАЛЬГАМА) . При прокаливании амальгамы золота летучая ртуть испаряется, золото остается. Во второй половине 15 в в Мексике применяли амальгамирование для извлечения из руды серебра (см. СЕРЕБРО) .
Алхимики считали ртуть составной частью всех металлов, полагая, что изменением ее содержания можно осуществить превращение ртути в золото. Только в 20 в. физики установили, что в процессе ядерной реакции атомы ртути действительно превращаются в атомы золота. Но такой способ чрезвычайно дорог.
Жидкая ртуть - очень подвижная жидкость. Алхимики называли ртуть «меркурием» по имени римского бога Меркурия, славившегося своей быстротой в перемещении. В английском, французском, испанском и итальянском языках для ртути используется название «mercury». Современное латинское название происходит от греческих слов «хюдор» - вода и «аргирос» - серебро, т. е. «жидкое серебро».
Ртутные препараты использовали в медицине в средние века (ятрохимия (см. ЯТРОХИМИЯ) ).
Нахождение в природе
Редкий рассеянный элемент. Содержание ртути в земной коре 7,0·10 –6 % по массе. В природе ртуть встречается в свободном состоянии. Образует более 30 минералов. Основной рудный минерал киноварь. Минералы ртути в виде изоморфных примесей встречаются в кварце, халцедоне, карбонатах, слюдах, свинцово-цинковых рудах. Желтая модификация HgO встречается в природе в виде минерала монтроидита. В обменных процессах литосферы, гидросферы, атмосферы участвует большое количество ртути. Содержание ртути в рудах от 0,05 до 6-7%.
Получение
Первоначально ртуть получали из киновари (см. КИНОВАРЬ) , помещая ее куски в вязанки хвороста и обжигая киноварь в кострах.
В настоящее время ртуть получают окислительно-восстановительным обжигом руд или концентратов при 700-800 о С в печах кипящего слоя, трубчатых или муфельных. Условно процесс может быть выражен:
HgS + O 2 = Hg + SO 2
Выход ртути при таком способе составляет около 80%. Более эффективен способ получения ртути путем нагревания руды с Fe (см. ЖЕЛЕЗО) и CaO:
HgS + Fe = Hg – + FeS,
4HgS + 4CaO = 4Hg – + 3CaS + CaSO 4 .
Особо чистую ртуть получают электрохимическим рафинированием на ртутном электроде. При этом содержание примесей составляет от 1·10 –6 до 1·10 –7 %.
Физические и химические свойства
Ртуть - серебристо-белый металл, в парах бесцветный. Единственный жидкий при комнатной температуре металл. Температура плавления –38,87°C, кипения 356,58°C. Плотность жидкой ртути при 20°C 13,5457 г/см 3 , твердой ртути при –38,9°C - 14,193 г/см 3 .
Твердая ртуть - бесцветные кристаллы октаэдрической формы, существующая в двух кристаллических модификациях. «Высокотемпературная» модификация обладает ромбоэдрической решеткой a-Hg, параметры ее элементарной ячейки (при 78 К) а= 0,29925 нм, угол b = 70,74 о. Низкотемпературная модификация b-Hg обладает тетрагональной решеткой (ниже 79К).
С использованием ртути голландский физик и химик Х.Камерлинг-Оннес (см. КАМЕРЛИНГ-ОННЕС Хейке) в 1911 впервые наблюдал явление сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) . Температура перехода a-Hg в сверхпроводящее состояние 4,153К, b-Hg - 3,949К. При более высоких температурах ртуть ведет себя как диамагнетик (см. ДИАМАГНЕТИК) . Жидкая ртуть не смачивает стекло и практически не растворяется в воде (в 100 г воды при 25°C растворяется 6·10 –6 г ртути).
Стандартный электродный потенциал пары Hg 2+ 2 /Hg 0 = +0.789 B, пары Hg 2+ /Hg 0 = +0.854B, пары Hg 2+ /Hg 2+ 2 = +0.920B. В неокисляющих кислотах ртуть не растворяется с выделением водорода (см. ВОДОРОД) . (см. КИСЛОРОД)
Кислород (см. КИСЛОРОД) и сухой воздух при обычных условиях ртуть не окисляют. Влажный воздух и кислород при ультрафиолетовом облучении или электронной бомбардировке окисляют ртуть с поверхности с образованием оксидов.
Ртуть окисляется кислородом воздуха при температуре выше 300°C, образуя оксид ртути HgO красного цвета:
2Hg + O 2 = 2HgO.
Выше 340°C этот оксид разлагается на простые вещества.
При комнатной температуре ртуть окисляется озоном (см. ОЗОН) .
Ртуть не реагирует при нормальных условиях с молекулярным водородом, но с атомарным водородом образует газообразный гидрид HgH. Ртуть не взаимодействует с азотом, фосфором, мышьяком, углеродом, кремнием, бором, германием.
С разбавленными кислотами ртуть не реагирует, но растворяется в царской водке (см. ЦАРСКАЯ ВОДКА) и в азотной кислоте. Причем, в случае с кислотой продукт реакции зависит от концентрации кислоты и соотношения ртути и кислоты. При избытке ртути, на холоду, протекает реакция:
6Hg + 8HNO 3 разбавл. = 3Hg 2 (NO 3) 2 + 2NO + 4H 2 O.
При избытке кислоты:
3Hg + 8HNO 3 = 3Hg(NO 3) 2 + 2NO + 4H 2 O.
С галогенами (см. ГАЛОГЕНЫ) ртуть активно взаимодействует с образованием галогенидов (см. ГАЛОГЕНИДЫ) . При реакциях ртути с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) возникают халькогениды (см. ХАЛЬКОГЕНИДЫ) HgS, HgSe, HgTe. Эти халькогениды праrтически не растворимы в воде. Например, значение ПР HgS = 2·10 –52 . Сульфид ртути растворяется только в кипящей HCl, царской водке (при этом образуется комплекс 2–) и в концентрированных растворах сульфидов щелочных металлов:
HgS + K 2 S = K 2 .
Сплавы ртути с металлами называют амальгамами (см. АМАЛЬГАМА) . Стойкие к амальгамированию металлы - железо (см. ЖЕЛЕЗО) , ванадий (см. ВАНАДИЙ) , молибден (см. МОЛИБДЕН) , вольфрам (см. ВОЛЬФРАМ) , ниобий (см. НИОБИЙ) и тантал (см. ТАНТАЛ (химический элемент)) . Со многими металлами ртуть образует интерметаллические соединения меркуриды.
Ртуть образует два оксида: оксид ртути(II) HgO и неустойчивый на свету и при нагревании оксид ртути(I) Hg 2 O (черные кристаллы).
HgO образует две модификации - желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg 2+ щелочи:
Hg(NO 3) 2 + 2NaOH = HgOЇ + 2NaNO 3 + H 2 O.
Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.
При добавлении щелочи к раствору соли ртути(I) образуется оксид ртути (I) Hg 2 O:
Hg 2 (NO 3) 2 + 2NaOH = Hg 2 O + H 2 O + 2NaNO 3 .
На свету Hg 2 O распадается на ртуть и HgO, давая осадок черного цвета.
Для соединений ртути(II) характерно образование устойчивых комплексных соединений (см. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ) :
2KI + HgI 2 = K 2 ,
2KCN + Hg(CN) 2 = K 2 .
Соли ртути(I) содержат группировку Hg 2 2+ со связью –Hg–Hg–. Получают эти соединения, восстанавливая соли ртути(II) ртутью:
HgSO 4 + Hg + 2NaCl = Hg 2 Cl 2 + Na 2 SO 4 ,
HgCl 2 + Hg = Hg 2 Cl 2 .
В зависимости от условий, соединения ртути(I) могут проявлять как окислительные, так и восстановительные свойства:
Hg 2 Cl 2 + Cl 2 = 2HgCl 2 ,
Hg 2 Cl 2 + SnCl 2 = 2Hg + SnCl 4 . (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ)
Пероксид (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ) HgO 2 - кристаллы; неустойчив, взрывается при нагревании и ударе.
Применение
Ртуть используют для изготовления катодов при электрохимическом получении едких щелочей и хлора, а также для полярографов, в диффузионных насосах, барометрах и манометрах; для определения чистоты фтора и его концентрации в газах. Парами ртути наполняют колбы газоразрядных ламп (ртутных и люминесцентных) и источников УФ излучения. Ртуть применяют при нанесении золотых покрытий и при добычи золота из руды. (см. )
Сулема (см. ) - важнейший антисептик, применяют при разбавлениях 1:1000. Оксид ртути (II), киноварь HgS применяются для лечения глазных и кожных и венерических заболеваний. Киноварь также используют для приготовления чернил и красок. В древности из киновари готовили румяна. Каломель (см. КАЛОМЕЛЬ) используется в ветеринарии в качестве слабительного средства.
Физиологическое действие
Ртуть и ее соединения высокотоксичны. Пары и соединения ртути накапливаясь в организме человека, сорбируются легкими, попадают в кровь, нарушают обмен веществ и поражают нервную систему. Признаки ртутного отравления проявляются уже при содержании ртути в концентрации 0.0002–0.0003 мг/л. Пары ртути фитотоксичны, ускоряют старение растений.
При работе с ртутью и ее соединениями следует предотвращать ее попадание в организм через дыхательные пути и кожу. Хранят в закрытых сосудах.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ртуть" в других словарях:

    Ртуть, и … Русский орфографический словарь

    Ртуть/ … Морфемно-орфографический словарь

    РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия



Loading...Loading...