Подробное описание. Состав и строение натурального каучука

Каучу́ки- натуральные или синтетические эластомеры,
характеризующиеся эластичностью, водонепроницаемо
стью и электроизоляционными свойствами, из которых
путём вулканизации получают резины и эбониты.

Природный каучук

Высокомолекулярный углеводород (C5H8)n, цисполимер изопрена; содержится в млечном соке
(латексе) гевеи, кок-сагыза (многолетнего травянистого растения
рода Одуванчик) и других каучуконосных растений. Растворим
в углеводородах и их производных
(бензине, хлороформе, сероуглероде и т. д.). В воде, спирте,
ацетоне натуральный каучук практически не набухает и не
растворяется. Уже при комнатной температуре натуральный
каучук присоединяет кислород, происходит окислительная
деструкция (старение каучука), при этом уменьшается его
прочность и эластичность. При температуре выше 200 °C
натуральный каучук разлагается с образованием
низкомолекулярных углеводородов. При взаимодействии
натурального каучука с серой, хлористой серой, органическими
пероксидами (вулканизация) происходит соединение через атомы
серы длинных макромолекулярных связей с образованием
сетчатых структур. Это придает каучуку высокую эластичность в
широком интервале температур. Натуральный каучук
перерабатывают в резину. В сыром виде применяют не более 1 %
добываемого натурального каучука (резиновый клей). Каучук
открыт де ла Кондамином в Кито (Эквадор) в 1751 году. Более
60 % натурального каучука используют для изготовления
автомобильных шин. В промышленных масштабах натуральный
каучук производится в Индонезии, Малайзии, Вьетнаме и
Таиланде.

Синтетические каучуки

Первым синтетическим каучуком, имевшим промышленное значение,
был полибутадиеновый (дивиниловый) каучук, производившийся
синтезом по методу С. В. Лебедева (получение из этилового
спирта бутадиена с последующей анионной полимеризацией жидкого
бутадиена в присутствии натрия). В 1932 году в
Ярославле запущен завод СК-1, работающий на основе этого метода,
который стал первым в мире заводом по производству синтетического
каучука в промышленных масштабах.
Изопреновые каучуки - синтетические каучуки, получаемые
полимеризацией изопрена в присутствии катализаторов -
металлического лития, перекисных соединений. В отличие от других
синтетических каучуков изопреновые каучуки, подобно натуральному
каучуку, обладают высокой клейкостью и незначительно уступают ему
в эластичности.
В настоящее время большая часть производимых каучуков
является бутадиен-стирольными или бутадиен-стиролакрилонитрильными сополимерами.

Синтетические каучуки

Каучуки с гетероатомами в качестве
заместителей или имеющими их в своём
составе часто характеризуются высокой
стойкостью к действию растворителей, топлив
и масел, устойчивостью к действию
солнечного света, но обладают худшими
механическими свойствами. Наиболее
массовым в производстве и применении
каучуками с гетерозаместителями являются
хлоропреновые каучуки (неопрен) -
полимеры 2-хлорбутадиена.
В ограниченном масштабе производятся и
используются тиоколы - полисульфидные
каучуки,
получаемые поликонденсацией дигалогеналка
нов (1,2-дихлорэтана, 1,2-дихлорпропана)
и полисульфидов щелочных металлов.

Основные типы синтетических каучуков:

Изопреновый
Бутадиеновый
Бутадиен-метилстирольный
Бутилкаучук (изобутилен-изопреновый сополимер)
Этилен-пропиленовый (этилен-пропиленовый сополимер)
Бутадиен-нитрильный (бутадиен-акрилонитрильный
сополимер)
Хлоропреновый (поли-2-хлорбутадиен)
Силоксановый
Фторкаучуки
Тиоколы

Натуральный каучук получают из латекса, который
содержится в коре некоторых тропических и субтропических
деревьев. Было рассказано и о том, что каучук состоит из
мономерных звеньев, представляющих собой метилбута-1,3диен. Длина полимерной цепи у натуральных каучуков в
среднем составляет 5 000 звеньев. Эти звенья могут
существовать в двух изомерных формах:

Натуральный каучук представляет собой главным
образом цис-изомер. Такой изомер, содержащийся,
например, в резине, придает полимеру эластичные
свойства, транс-Изомер не обладает эластичными
свойствами. Натуральный каучук, состоящий из трансизомера метилбута-1,3-диена, называется гуттаперча
(от названия растущего в Малайе дерева перча).
Первые изделия из натурального каучука резиновые
трубки, ленты и водонепроницаемые материалы имели
не долгий срок службы, размягчались и становились
липкими в жаркую погоду. Кроме того, подобно другим
термопластам, натуральный каучук при охлаждении
становится твердым и хрупким. Это обусловлено
наличием некоторого сшивания между полимерными
цепями.

В 1838 г. американский
изобретатель Чарлз
Гудьяр обнаружил, что
указанный недостаток
можно преодолеть,
нагревая каучук вместе с
серой. Этот процесс
называется вулканизацией
и приводит к образованию
дисульфидных мостиковых
связей, «сшивающих»
полимерные цепи:

10.

Первый синтетический каучук был получен
путем полимеризации 2-хлоробута-1,3-диена:
Полученный продукт неопрен представляет
собой полимер, устойчивый к химическим воздействиям
и до сих пор используется с целью изготовления
шлангов для перекачки нефти и масел, а также сосудов
для хранения коррозионных химических веществ.

11.

Из бута-1,3-диена и его производных получают
разнообразные каучуки. Наиболее распространенным
из них является бутадиен-стирольный каучук. Его
получают путем сополимеризации фенилэтапена
(стирола) и бута-1,3-диена (бутадиена):

12.

Приблизительно от 60 до 70% всех каучуков используется для
изготовления шин. Около 4% получаемого каучука расходуется на
изготовление обуви. Для изготовления автомобильных шин обычно
используется бутадиен-стирольный каучук, который
характеризуется высокой износостойкостью и хорошей
сцепляемостью с дорожными покрытиями. Более крупные шины
изготовляют из смесей натурального и синтетического каучука, а
для авиационных шин используют только натуральный каучук.
Натуральный каучук обладает значительно лучшей
термостойкостью, чем синтетический.
Продукты из натурального и синтетического каучуков содержат
лишь около 60% чистого каучука. Для улучшения свойств каучука в
него вводят серу и другие добавки, а для повышения прочности и
жесткости резины в нее вводят наполнитель, например углеродную
сажу. Последнее обстоятельство объясняет черную окраску шин.
Кроме указанных веществ в процессе переработки каучуков в
некоторые материалы в них вводят различные масла, облегчающие
их механическую обработку и снижающие стоимость.

13.

В последние десятилетия масштабы получения
натурального каучука не удовлетворяют спрос на него,
и производство синтетического каучука все больше
доминирует над получением натурального каучука.

История каучука началась со времен Великих географических открытий. Когда Колумб вернулся в Испанию, он привез из Нового Света множество диковин. Одной из них был эластичный мяч из «древесной смолы», который отличался удивительной прыгучестью. Индейцы делали такие мячи из белого сока растения гевея, растущего на берегах р.Амазонки. Этот сок темнел и затвердевал на воздухе. Мячи считались священными и использовались в религиозных обрядах. У племен майя и ацтеков существовала командная игра с использованием мячей, напоминающая баскетбол. Впоследствии испанцы полюбили играть вывезенными из Южной Америки мячами. Модифицированная ими индейская игра послужила прообразом современного футбола.
Сок гевеи индейцы называли «каучу» – слезы млечного дерева («кау» – дерево, «учу» – течь, плакать). От этого слова образовалось современное название материала – каучук. Кроме эластичных мячей индейцы делали из каучука непромокаемые ткани, обувь, сосуды для воды, ярко раскрашенные шарики – детские игрушки.
Однако в Европе забыли про южноамериканскую диковинку до 18 в., когда члены французской экспедиции в Южной Америке обнаружили дерево, выделяющее удивительную, затвердевающую на воздухе смолу, которой дали название «резина» (по латыни resina – смола). В 1738 французский исследователь Ш.Кондамин представил в Парижской академии наук образцы каучука, изделия из него и описание способов добычи в странах Южной Америки. С тех пор начались поиски возможных способов применения этого вещества. Во Франции изобрели удобные подтяжки и подвязки из сплетенных с хлопком резиновых ниток. А после 1823, когда шотландец Ч.Макинтош придумал прокладывать тонкий слой резины между двумя кусками ткани, начался настоящий «резиновый бум». Непромокаемые плащи из этой ткани, которые стали называть в честь их создателя «макинтошами», получили широкое распространение. Примерно в то же время в Америке стало модно в дождливую погоду поверх башмаков носить неуклюжую индейскую резиновую обувь – галоши.
Огромную, хоть и недолгую популярность в Европе и Северной Америке резиновые изделия получили после того, как англичанин Чаффи изобрел прорезиненную ткань. Он растворял сырую резину в скипидаре, добавлял сажу и, с помощью специально сконструированной машины, наносил тонкий слой смеси на ткань. Из такого материала делали не только одежду, обувь и головные уборы, но и крыши домов и фургонов.
Однако у изделий из прорезиненной ткани был большой недостаток. – эластичность каучука проявляется лишь в небольшом интервале температур, поэтому в холодную погоду резиновые изделия твердели и могли растрескаться, а летом размягчались, превращаясь в липкую, издающую зловоние массу. Одежду и обувь на лето приходилось прятать в прохладный погреб, с прорезиненными крышами было хуже – приходилось терпеть неприятные запахи. Энтузиазм по поводу нового материала быстро иссяк. А когда однажды в Северо-Американских Соединенных Штатах выдалось жаркое лето, наступил кризис резиновой промышленности – вся ее продукция превратилась в мерзко пахнущий кисель. Фирмы по производству резины разорились.
И все бы забыли про макинтоши и галоши, если бы не американец Чарльз Нельсон Гудьир, который верил, что из каучука можно создать хороший материал. Он посвятил этой идее несколько лет и потратил все свои сбережения. Современники смеялись над ним: «Если вы увидите человека в резиновом пальто, резиновых ботинках, резиновом цилиндре и с резиновым кошельком, а в кошельке ни единого цента, то можете не сомневаться – это Гудьир». Однако Гудьир упорно смешивал каучук со всем подряд: с солью, перцем, песком, маслом и даже с супом и, в конце концов, добился успеха. В 1839 он обнаружил, что добавляя в каучук немного серы и нагревая, можно улучшить его прочность, твердость, эластичность и тепло- и морозоустойчивость. Сейчас именно новый материал, изобретенный Гудьиром, принято называть резиной, а открытый им процесс – вулканизацией каучука.
История упорного изобретателя имеет счастливый конец: предложение о покупке патента на новый материал, обладающий отличными качествами, Гудьир получил, находясь в отчаянном финансовом положении – у него к этому времени был долг в 35 000 долларов, который вскоре он смог оплатить. С этого времени начинается бурный рост производства каучука. Еще при жизни Гудьира только в резиновой промышленности США работало больше 60 000 человек. Кстати, в России, в Санкт-Петербурге предприятие по производству резиновых изделий открылось в 1860.ne Вторая половина 19 в. – время процветания Бразилии, которая долгое время была монополистом по выращиванию деревьев-каучуконосов. Центр каучуконосных районов, Манаус, был богатейшим городом западного полушария. Достаточно упомянуть, что великолепный оперный театр в затерянном в джунглях Манаусе не только строили лучшие французские архитекторы, но даже стройматериалы для него привозились из Европы.
Неудивительно, что Бразилия берегла источник своего богатства. Вывоз семян гевеи был запрещен под страхом смертной казни. Однако в 1876 британский шпион Генри Уикхем в трюмах английского судна «Амазонас» тайно вывез 70 000 семян гевеи. В британских колониях Юго-Восточной Азии были заложены первые плантации каучуконосов. На мировом рынке появился натуральный английский каучук, более дешевый, чем бразильский.
А мир завоевывали разнообразные изделия из резины – транспортерные ленты конвейеров и электроизоляция, «резинки» для белья, резиновая обувь, детские воздушные шары и т.д. Но основное применение этот материал получил с изобретением и распространением резиновых экипажных, а затем автомобильных шин.
Изобретение резиновых шин вместо металлических сначала было встречено без энтузиазма, хотя экипажи с металлическими шинами были не слишком комфортны – за страшный шум и тряску в Англии их называли «истребителями воробьев». Новые тихие экипажи на цельнолитых массивных шинах в Америке были запрещены. Они считались опасными, так как не предупреждали прохожих о приближении экипажа. В России тихие конные экипажи на резиновом ходу также вызывали недовольство – они обдавали грязью не успевших посторониться пешеходов. Поэтому московские власти вынесли решение специально помечать такие экипажи: «Дабы обиженные шинниками обыватели могли заметить своих обидчиков, чтобы привлечь их к законной ответственности, экипажи на резиновом ходу должны снабжаться номерными знаками особого цвета, чем обычные номера извозчиков».
Природный каучук. Строение и свойства. С изобретением конвейерного метода сборки автомобилей потребность в резине стала настолько велика, что настоятельно возник вопрос об ограниченности производства природного сырья. Надо было искать другие источники каучука. Поэтому неудивительно, что в конце 19 – первой половине 20 в. во многих странах исследовались строение каучука, его физические и химические свойства, эластичность, процесс вулканизации. То, что при нагревании из каучука можно получить молекулы изопрена
долгое время объясняли с помощью теории К.Харриеса, который считал, что каучук состоит из множества колец-звеньев изопрена, которые составляют устойчивую мицеллу, т.е. он представляет собой обычную коллоидную частицу. Оппонентом К.Харриеса выступал Г.Штаудингер, доказавший, что каучук является высокомолекулярным соединением, т.е. состоит из обычных, хотя и гигантских молекул, атомы в которых связаны ковалентными связями. На основании своих исследований каучука и резины он выдвинул теорию цепного строения макромолекул, предположил существование разветвленных макромолекул и трехмерной полимерной сетки.

">

Для получения натурального каучука млечный сок гевеи (латекс) добывают методом подсечки, надрезая кору дерева. Натуральный латекс, представляющий собой водную эмульсию каучука, содержит 34–37% каучука, 52-60% воды, а также белки, смолы углеводы и минеральные вещества. Из латекса каучук коагулируют органическими кислотами, промывают водой и прокатывают в листы, которые сушат и коптят дымом. Копчение предохраняет каучук от окисления и действия микроорганизмов.
В натуральном каучуке содержится 91–96% углеводорода полиизопрена (C 5 H 8) n , а также белки и аминокислоты, жирные кислоты, каротин, небольшие количества солей меди, марганца, железа и др. примеси. Полиизопрен натурального каучука является стереорегулярным полимером. Практически все звенья изопрена 98–100% в макромолекуле присоединены в цис-1,4-положении:

Молекула натурального каучука может содержать 20–40 тыс. элементарных звеньев, его молекулярная масса составляет от 1 400 000–2 600 000, он нерастворим в воде, зато хорошо растворяется в большинстве органических растворителей.
Интересно, что существует природный геометрический изомер каучука – гуттаперча, представляющая собой транс-1,4-полиизопрен:

Различия в пространственном расположении заместителей у каучука и гуттаперчи приводят к тому, что и форма макромолекул этих веществ тоже различна. Молекулы каучука закручены в клубки. Если ленту из каучука растягивать, деформировать, то молекулярные клубки будут выпрямляться в направлении прилагаемой сил, и лента будет удлиняться. Однако молекулам каучука энергетически выгоднее находиться в первоначальном состоянии, поэтому, если натяжение прекратить, молекулы опять свернутся в клубки, и размеры ленты станут прежними. Конечно, нельзя увеличивать нагрузку на ленту до бесконечности – рано или поздно деформация будет необратимой, лента порвется.
Молекулы гуттаперчи не закручены в клубки так, как каучук. Они вытянуты даже без нагрузок, поэтому гуттаперча менее эластична.
Эластичность – это способность к обратимой деформации, особое свойство некоторых полимеров, характерное для лишь при определенных значениях температур. При нагревании каучук из эластичного состояния переходит в вязкотекучее. Силы взаимодействия между молекулами ослабевают, полимер не сохраняет форму и напоминает очень вязкую жидкость. При охлаждении каучук из эластичного переходит в стеклообразное состояние, становится похож на твердое тело. Такой полимер легко и обратимо не растягивается при приложении нагрузки. Он сразу рвется, если нагрузка слишком велика. Полимеры в стеклообразном состоянии могут быть хрупкими, их можно сломать или даже разбить, например, морозной зимой может растрескаться сумка из кожзаменителя, т.к. при низких температурах он переходит в стеклообразное состояние).
Что же происходит с каучуком при вулканизации? Когда каучук нагревают с серой, макромолекулы каучука «сшиваются» друг с другом серными мостиками. Из отдельных макромолекул каучука образуется единая трехмерная пространственная сетка. Изделие из такого материала (резины) прочнее, чем из каучука, и сохраняет свою эластичность в более широком интервале температур.
Сейчас известно много вулканизирующих агентов, однако при производстве резины по-прежнему широко используют серу. В качестве ускорителей вулканизации применяют 2-меркаптобензтиазол и некоторые его производные. Возможна и радиационная вулканизация и вулканизация с помощью органических пероксидов. Вулканизации обычно подвергают смесь каучука с различными добавками, придающими резине необходимые свойства, и наполнителями, снижающими стоимость резины (сажа, мел).

">

С появлением технологии производства синтетических каучуков, резиновая промышленность перестала быть всецело зависимой от природного каучука, однако синтетический каучук не вытеснил природный, объем производства которого по-прежнему возрастает, а доля натурального каучука в общем объеме производства каучука составляет 30%. Ведущие мировые производители натурального каучука – страны Юго-Восточной Азии (Таиланд, Индонезия, Малайзия, Вьетнам, Китай). Благодаря уникальным свойствам натурального каучука, он незаменим при производстве крупногабаритных шин, способных выдерживать нагрузки до 75 тонн. Лучшие фирмы-производители изготавливают покрышки для шин легковых автомобилей из смеси натурального и синтетического каучука, поэтому до сих пор главной областью применения натурального каучука остается шинная промышленность (70%). Кроме того, натуральный каучук применяется при изготовлении конвейерных лент высокой мощности, антикоррозийных покрытий котлов и труб, клея, тонкостенных высокопрочных мелких изделий, в медицине и т.д.
Во многих странах в начале 20 в. исследовались местные виды растений. В Советском Союзе систематический поиск растений-каучуконосов предпринимался в 1930-х, общий список таких растений составил 903 вида. Наиболее эффективные каучуконосы, в частности Тянь-Шанский одуванчик кок-сагыз, выращивали на полях России, Украины, Казахстана, работали заводы по выделению каучука, который по качеству считался не уступающим каучуку из гевеи. В конце 1950-х с увеличением производства синтетического каучука возделывание одуванчика-каучуконоса было прекращено.

натуральный относится к группе эластомеров - высокомолекулярных соединений, обладающих способностью к большим обратимым деформациям при комнатной и более низких температурах (см. также Высокоэластическое состояние ). Каучук натуральный содержится в млечном соке (латексе) каучуконосных растений ; отдельные включения каучука имеются также в клетках коры и листьев этих растений. Добывают Каучук натуральный главным образом из латекса бразильской гевеи , которая произрастает на плантациях в тропических странах. Крупнейший производитель Каучук натуральный - Малайзия (свыше 40% мирового производства).

Термин «каучук» происходит от названия «каучу», которым жители Бразилии обозначали продукт, добываемый из гевеи, растущей на берегах р. Амазонки («кау» - дерево, «учу» - течь, плакать). Историю Каучук натуральный ведут обычно с 1738, когда французский исследователь Ш. Кондамин представил в АН в Париже образцы каучука, изделия из него и описание способов добычи в странах Южной Америки. Промышленное применение Каучук натуральный оказалось возможным после открытия процесса вулканизации (Ч. Гудьир - США, 1839; Т. Гэнкок - Великобритания, 1843). Основные данные о строении Каучук натуральный были получены в 70-х гг. 19 в. и позднее Г. Бушарда , Г. Штаудингером , немецким учёным К. Гарриесом. Обширные исследования вулканизации Каучук натуральный принадлежат Б. В. Бызову , Б. А. Догадкину, И. И. Остромысленскому , американскому учёному Э. Х. Фармеру и др. Исследованию физических свойств и разработке теории эластичности Каучук натуральный посвящены работы советских учёных А. П. Александрова , В. А. Каргина , П. П. Кобеко, американских исследователей Е. Гута, Л. Р. Г. Трелоара, Ф. Т. Уолла и др.

При получении Каучук натуральный латекс извлекают подсочкой коры деревьев; из латекса каучук выделяют коагуляцией с помощью муравьиной, щавелевой или уксусной кислоты. Образующийся рыхлый сгусток (коагулюм) промывают водой и прокатывают на вальцах для получения листов, которые сушат и обычно коптят в камерах, наполненных дымом. Копчение придаёт Каучук натуральный устойчивость против окисления и действия микроорганизмов.

В соответствии с «Международным стандартом по качеству и упаковке натурального каучука» (1969) Каучук натуральный подразделяют на 8 международных типов, включающих 35 международных сортов. Основные типы Каучук натуральный - рифлёный смокед-шит (продукт светло-янтарного цвета - «копчёный лист») и светлый креп (продукт светло-кремового цвета, перед выделением которого в латекс вводят специальные отбеливающие вещества, например бисульфит натрия; Каучук натуральный этого типа копчению не подвергают). Качество Каучук натуральный международных типов и сортов оценивают на основании внешнего осмотра и сравнения с эталоном. Существует также классификация Каучук натуральный по техническим стандартам, в которых регламентируется содержание примесей в каучуке. Наряду с Каучук натуральный общего назначения выпускают каучуки специальных типов, например с улучшенными технологическими или механическими свойствами, изготовляемые в порошкообразной выпускной форме, и др. Ведутся обширные опытные и исследовательские работы как в направлении улучшения качества Каучук натуральный , так и повышения продуктивности каучуконосов.

Основная составная часть Каучук натуральный - углеводород каучука (91-96%), который рассматривают как полиизопрен ( 5 8) n . Каучук натуральный содержит также 2,2-3,8% белков и аминокислот, 1,5-4,0% веществ, извлекаемых ацетоном (так называемый ацетоновый экстракт - олеиновая, стеариновая, линолевая кислоты, каротин и др.), соединения металлов переменной валентности - меди (до 0,0008%), марганца (до 0,001%), железа (до 0,01%), песок и некоторые др. примеси. Каучук натуральный относятся к стереорегулярным полимерам ; 98-100% звеньев изопрена в его макромолекуле присоединены в положении 1,4 цис:

Молекулярная масса Каучук натуральный 1 400 000 - 2 600 000, содержание двойных связей в макромолекуле 95-98,5% от теоретического значения. Плотность Каучук натуральный 0,91-0,92 г /см 3 , показатель преломления 1,5191, температура стеклования от -70 до -72 °С, удельная теплоёмкость 1,880 кдж /(кг . К), теплопроводность 0,14 вт/ (м . К ) , диэлектрическая проницаемость при частоте 1 кгц 2,37-2,45, удельная электропроводность 25,7 . 10 –18 ом –1. см –1 .

Каучук стоек к действию воды; хорошо растворим в бензоле, толуоле, ксилоле, бензине, четырёххлористом углероде, хлороформе, сероуглероде, циклогексане. При температурах выше 10 °С Каучук натуральный аморфен. Длительное хранение при более низких температурах или растяжение при комнатной температуре вызывают частичную кристаллизацию Каучук натуральный К числу ценных свойств Каучук натуральный относится его высокая когезионная прочность (см. Когезия ). Этим свойством обусловлена в значительной степени незаменимость Каучук натуральный в производстве некоторых деталей шин. Технологический недостаток Каучук натуральный , связанный с его высокой молекулярной массой, - необходимость пластикации (см. Пластикация каучуков ) перед введением ингредиентов резиновой смеси .

Наиболее распространённый вулканизующий агент для Каучук натуральный - сера; в качестве ускорителей вулканизации применяют 2-меркаптобензтиазол (каптакс), его сульфенамидные производные (например, сантокюр), дибензтиазолилдисульфид (альтакс), тетраметилтиурамдисульфид (тиурам) и др. Возможны также радиационная вулканизация Каучук натуральный и вулканизация с помощью органических перекисей или алкилфеноло-формальдегидных смол.

Кристаллизация Каучук натуральный обусловливает высокую прочность при растяжении резин на его основе. При введении активных наполнителей прочность резин изменяется незначительно, но существенно повышаются некоторые др. механические свойства (см. табл.). Резины из Каучук натуральный характеризуются хорошей эластичностью, износо- и морозостойкостью и высокими динамическими свойствами, но низкой стойкостью к действию растворителей, масел, а также меньшей, чем у некоторых синтетических каучуков, тепло- и атмосферостойкостью.

Свойства резин из натурального каучука


Показатели

Ненаполненная резина

Резина, наполненная газовой канальной сажей

Модуль при растяжении 500%, Мн/м 2 (кгс/см 2)

1,5-4,5 (15-45)

12-22 (120-220)

Прочность при растяжении, Мн/м 2 (кгс/см 2)

28-34 (280-340)

30-34 (300-340)

Относительное удлинение, %

700-900

600-800

Сопротивление раздиру, кн/м , или кгс/см

40-50

120-170

Твёрдость по ТМ–2

30-40

50-75

Основная область применения Каучук натуральный - производство шин. Его используют также в производстве резинотехнических изделий (транспортёрные ленты, приводные ремни, амортизаторы, уплотнители), электроизоляционных материалов, резиновых изделий народного потребления, при изготовлении Каучук натуральный " в Большой Советской Энциклопедии была прочитана 21654 раз

). К. н. относится к группе эластомеров (См. Эластомеры) - высокомолекулярных соединений, обладающих способностью к большим обратимым деформациям при комнатной и более низких температурах (см. также Высокоэластическое состояние). К. н. содержится в млечном соке (латексе) каучуконосных растений (См. Каучуконосные растения); отдельные включения каучука имеются также в клетках коры и листьев этих растений. Добывают К. н. главным образом из латекса бразильской гевеи (См. Гевея), которая произрастает на плантациях в тропических странах. Крупнейший производитель К. н. - Малайзия (свыше 40% мирового производства).

Термин «каучук» происходит от названия «каучу», которым жители Бразилии обозначали продукт, добываемый из гевеи, растущей на берегах р. Амазонки («кау» - дерево, «учу» - течь, плакать). Историю К. н. ведут обычно с 1738, когда французский исследователь Ш. Кондамин представил в АН в Париже образцы каучука, изделия из него и описание способов добычи в странах Южной Америки. Промышленное применение К. н. оказалось возможным после открытия процесса вулканизации (Ч. Гудьир - США, 1839; Т. Гэнкок - Великобритания, 1843). Основные данные о строении К. н. были получены в 70-х гг. 19 в. и позднее Г. Бушарда , Г. Штаудингер ом, немецким учёным К. Гарриесом. Обширные исследования вулканизации К. н. принадлежат Б. В. Бызов у, Б. А. Догадкину, И. И. Остромысленскому (См. Остромысленский), американскому учёному Э. Х. Фармеру и др. Исследованию физических свойств и разработке теории эластичности К. н. посвящены работы советских учёных А. П. Александров а, В. А. Каргин а, П. П. Кобеко, американских исследователей Е. Гута, Л. Р. Г. Трелоара, Ф. Т. Уолла и др.

При получении К. н. латекс извлекают подсочкой коры деревьев; из латекса каучук выделяют коагуляцией (См. Коагуляция) с помощью муравьиной, щавелевой или уксусной кислоты. Образующийся рыхлый сгусток (коагулюм) промывают водой и прокатывают на вальцах для получения листов, которые сушат и обычно коптят в камерах, наполненных дымом. Копчение придаёт К. н. устойчивость против окисления и действия микроорганизмов.

В соответствии с «Международным стандартом по качеству и упаковке натурального каучука» (1969) К. н. подразделяют на 8 международных типов, включающих 35 международных сортов. Основные типы К. н. - рифлёный смокед-шит (продукт светло-янтарного цвета - «копчёный лист») и светлый креп (продукт светло-кремового цвета, перед выделением которого в латекс вводят специальные отбеливающие вещества, например бисульфит натрия; К. н. этого типа копчению не подвергают). Качество К. н. международных типов и сортов оценивают на основании внешнего осмотра и сравнения с эталоном. Существует также классификация К. н. по техническим стандартам, в которых регламентируется содержание примесей в каучуке. Наряду с К. н. общего назначения выпускают каучуки специальных типов, например с улучшенными технологическими или механическими свойствами, изготовляемые в порошкообразной выпускной форме, и др. Ведутся обширные опытные и исследовательские работы как в направлении улучшения качества К. н., так и повышения продуктивности каучуконосов.

Основная составная часть К. н. - углеводород каучука (91-96%), который рассматривают как полиизопрен (C 5 H 8) n . К. н. содержит также 2,2-3,8% белков и аминокислот, 1,5-4,0% веществ, извлекаемых ацетоном (так называемый ацетоновый экстракт - олеиновая, стеариновая, линолевая кислоты, каротин и др.), соединения металлов переменной валентности - меди (до 0,0008%), марганца (до 0,001%), железа (до 0,01%), песок и некоторые др. примеси. К. н. относятся к стереорегулярным полимерам (См. Стереорегулярные полимеры); 98-100% звеньев изопрена в его макромолекуле присоединены в положении 1,4 цис:

Молекулярная масса К. н. 1 400 000 - 2 600 000, содержание двойных связей в макромолекуле 95-98,5% от теоретического значения. Плотность К. н. 0,91-0,92 г /см 3 , показатель преломления 1,5191, температура стеклования от -70 до -72 °С, удельная теплоёмкость 1,880 кдж /(кг . К), теплопроводность 0,14 вт/ (м . К ) , диэлектрическая проницаемость при частоте 1 кгц 2,37-2,45, удельная электропроводность 25,7 . 10 –18 ом –1. см –1 .

Каучук стоек к действию воды; хорошо растворим в бензоле, толуоле, ксилоле, бензине, четырёххлористом углероде, хлороформе, сероуглероде, циклогексане. При температурах выше 10 °С К. н. аморфен. Длительное хранение при более низких температурах или растяжение при комнатной температуре вызывают частичную кристаллизацию К. н. К числу ценных свойств К. н. относится его высокая когезионная прочность (см. Когезия). Этим свойством обусловлена в значительной степени незаменимость К. н. в производстве некоторых деталей шин. Технологический недостаток К. н., связанный с его высокой молекулярной массой, - необходимость пластикации (см. Пластикация каучуков) перед введением ингредиентов резиновой смеси (См. Резиновая смесь).

Наиболее распространённый вулканизующий агент для К. н. - сера; в качестве ускорителей вулканизации применяют 2-меркаптобензтиазол (каптакс), его сульфенамидные производные (например, сантокюр), дибензтиазолилдисульфид (альтакс), тетраметилтиурамдисульфид (тиурам) и др. Возможны также радиационная вулканизация К. н. и вулканизация с помощью органических перекисей или алкилфеноло-формальдегидных смол.

В результате быстрого развития промышленных отраслей в начале 20 века, появилась огромная потребность в каучуке. Но натурального каучука было слишком мало для удовлетворения этих потребностей. Поэтому остро встал вопрос о синтетическом получении каучука. В конце 20-х годов нашего столетия ленинградские химики во главе с С. В. Лебедевым разработали способ получения каучука из этилового спирта с последующей полимеризацией его на металлическом натрии. На основе этого метода в нашей стране было основано первое в мире промышленное производство синтетического каучука.

Синтетические каучуки – синтетические полимеры, способные перерабатываться в резину путем вулканизации, составляют основную массу эластомеров.

Синтетический каучук – высокополимерный, каучукоподобный материал. Его получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральным каучукам, синтетические имеют длинные макромолекулярные цепи, иногда разветвленные, со средним молекулярным весом, равным сотням тысяч и даже миллионам. Полимерные цепи в синтетическом каучуке в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, получаемая при этом резина, приобретает характерные физико-механические свойства.

Обычно приняты классификация и наименование каучуков по мономерам, использованным для их получения (изопреновые, бутадиеновые и т. д.) или по характерной группировке (атомам) в основной цепи или боковых группах (уретановые, полисульфидные и др.) Синтетические каучуки также подразделяют по признакам, например, по содержанию наполнителей (наполненные и ненаполненные), по молекулярной массе (консистенции) и выпускной форме (твердые, жидкие, порошкообр.). Часть синтетических каучуков выпускают в виде водных дисперсий – синтетических латексов. Особую группу каучуков составляют – термоэластопласты.

Некоторые виды синтетических каучуков (например полизобутилен, силиконовый каучук) представляют собой полностью предельные соединения, поэтому для их вулканизации применяют органические перекиси, амины и др. вещества. Отдельные виды синтетических каучуков по ряду технических свойств превосходят натуральный каучук.

По области применения синтетические каучуки разделяют на каучуки общего и специального назначения. К каучукам общего назначения относят каучуки с комплексом достаточно высоких технических свойств (прочность, эластичность и др.), пригодных для массового изготовления широкого круга изделий. К каучукам специального назначения относят каучуки с одним или несколькими свойствами, обеспечивающими выполнение специальных требований к изделию и иго работоспособности в часто экстремальных условиях эксплуатации.

Каучуки общего назначения: изопреновые, бутадиеновые, бутадиенстирольные и др.

Каучуки специального назначения: бутилкаучук, этиленпропиленовые, хлорпреновые, фторкаучуки, уретановые и др.

Свойства и преимущества применения основных типов синтетических каучуков

Свойства синтетических каучуков определяют их области применения. Создание рецептуры резино-технического изделия сопровождается подбором различных видов каучуков, наполнителей, мягчителей и др. Правильное сочетание всех компонентов в рецептуре позволяет получить резино-техническое изделие с заданными свойствами. Представим основные свойства каучуков общего назначения.

Бутадиен-стирольный каучук

Бутадиен-стирольный каучук обладает отличным сочетанием функциональных свойств в различных областях применения. Этот каучук считают лучшим каучуком общего назначения благодаря отличным свойствам высокой стойкости к истиранию и высокому проценту наполняемости. С увеличением содержания звеньев стирола (α-метилстирола) в сополимере снижается эластичность каучука, ухудшается морозостойкость, но увеличиваются прочностные показатели. Характерной особенностью бутадиен-стирольных (α-метилстирольных) каучуков является низкое сопротивление разрыву ненаполненных вулканизатов . Эти каучуки имеют более высокую температуру стеклования по сравнению с натуральным каучуком и уступают натуральному каучуку по морозостойкости. Важным преимуществом бутадиен-стирольных каучуков перед натуральным каучуком является меньшая склонность к образованию трещин, более высокая износостокость, паро- и водонепроницаемость, лучшее сопротивление тепловому, озонному и световому старению. Хорошими диэлектрическими свойствами обладают каучуки с высоким содержанием стирола (количество стирола в смеси мономеров 50 вес. % и выше).

Полибутадиеновый каучук

Большая часть полибутадиенового каучука в настоящее время производится 1,4-цис типа, но некоторые имеют смешанную структуру звеньев. Будучи ненасыщенным каучуком, он с легкостью вулканизуется с серой. Полибутадиеновый каучук обладает отличной стойкостью к низким температурам и к истиранию. Но при этом, он не обладает высокой прочностью при растяжении и обычно наполняется упрочняющими добавками. Он также имеет меньшую прочность на растяжение, плохую технологическую переработку и плохое сцепление с дорогой по сравнению с натуральным каучуком. Поэтому в рецептурах резинотехнических изделий он перемешивается с натуральным каучуком или бутадиен-стирольным каучуком.

Полибутадиеновые каучуки используются в большом количестве в смесях с другими эластомерами, для придания хорошего свойств гистерезиса и стойкости к истиранию. Смеси полибутадиена с бутадиен-стирольным или натуральным каучуками широко используются в легковых и грузовых шинах для улучшения устойчивости к растрескиванию. Кроме этого полибутадиеновый каучук используется как модификатор в смесях с другими эластомерами для улучшения морозостойких свойств, стойкости к тепловому старению, истиранию и растрескиванию.

Бутилкаучук

Бутилкаучук имеет уникальную способность удерживать воздух, что обеспечивает ему безусловный приоритет в шинной промышленности при производстве камер и диафрагм. Автомобильные камеры из бутилкаучука сохраняют исходное давление воздуха в 8-10 раз дольше, чем аналогичные камеры из натурального каучука, что повышает срок службы шины минимум на 10-18% по сравнению с натуральным каучуком. Каучук стоек к воздействию озона и имеет хорошую стойкость к полярным растворителям, водным растворам кислот и окисляющих реагентов. Он обладает хорошей стойкостью к животному и растительному маслу, но бутилкаучук нестоек к воздействию минеральных масел.

Прочность на разрыв бутилкаучука немного меньше по сравнению с натуральным каучуком, но при высоких температурах этот показатель одинаковый для обоих каучуков. Стойкость к истиранию хорошая, когда каучук тщательно наполнен (также как остаточная деформация сжатия), но упругость все же остается очень низкой. К недостаткам бутилкаучука относятся его низкая скорость вулканизации, неудовлетворительная адгезия к металлам, плохая совместимость с некоторыми ингредиентами, малая эластичность при обычных температурах, высокое теплообразование при многократных деформациях.

Некоторые из этих существенных недостатков бутилкаучука (такие, как низкая скорость вулканизации, препятствующая его применению в смесях с другими каучуками, низкая адгезия ко многим материалам, особенно металлам) устраняются частичным изменением химической природы полимера. Например, введением в макромолекулы каучука небольшого количества атомов галогенов. Бромбутилкаучук (от 1 до 3.5 вес. % брома) перерабатывается и смешивается с ингредиентами так же, как и бутилкаучук. Но при этом бромбутилкаучук вулканизуется значительно быстрее, чем бутилкаучук. Скорость вулканизации бромбутилкаучука сравнима со скоростью вулканизации натурального, бутадиен-стирольного и других каучуков, что делает возможным его применение в смесях с этими эластомерами. Близкими свойствами обладают и другие галогенированные бутилкаучуки, например, хлорбутилкаучук (1.1 – 1.3 вес. % хлора). Однако скорость вулканизации и свойства вулканизатов хлорбутилкаучука несколько ниже, чем бромбутилкаучука.

Этиленпропиленовые каучуки

Этиленпропиленовые каучуки самые легкие каучуки, которые имеют плотность от 0,86 до 0,87. Свойства зависят от содержания и вариации этиленовых звеньев в сополимерных звеньях. Этиленпропиленовый каучук не содержит двойных связей в молекуле, бесцветный, имеет отличную стойкость к воздействию тепла, света, кислорода и озона. Для насыщенных этилен-пропиленовых каучуков применяется перекисная вулканизация. Каучук этилен-пропилен-диеновый, который содержит частичную ненасыщенность связей, допускает вулканизацию с серой. Он немного меньше устойчив к старению, чем этилен-пропиленовый каучук.

Насыщенный характер сополимера этилена с пропиленом сказывается на свойствах резин на основе этого каучука. Устойчивость данных каучуков к теплу и старению намного лучше, чем у бутадиен-стирольного и натурального каучуков. Готовые резиновые изделия имеют также отличную стойкость к неорганическим или высокополярным жидкостям таким, как кислоты, щелочи и спирты. Свойства резины на основе данного вида каучука не изменяются после выдерживания ее в течение 15 суток при 25С в 75%-ной и 90%-ной серой кислоте и в 30%-ной азотной кислоте. С другой стороны стойкость к алифатическим, ароматическим или хлорсодержащим углеводородам достаточно низкая.

Все виды этилен-пропиленовых каучуков наполняются упрочняющими наполнителями, такими как сажа, чтобы придать хорошие механические свойства. Электрические, изоляционные и диэлектрические свойства чистого этилен-пропиленового каучука экстраординарны, но также зависят от выбора наполняющих ингредиентов. Их эластичные свойства лучше, чем у многих синтетических каучуков, но они не достигают уровня натурального каучука и бутадиен-стирольного каучука. Эти каучуки имеют два значительных недостатка. Они не могут быть перемешаны с другими простыми каучуками и неустойчивы к воздействию масла.

Наиболее сложными проблемами, сдерживающими использование этилен-пропиленовых каучуков в шинном производстве, являются неудовлетворительная прочность с кордом и невозможность совулканизации протекторных резин с резинами на основе других каучуков. После решения этих проблем потребление этилен-пропиленовых каучуков может значительно расшириться.

Цис-1,4-полиизопреновый каучук

Синтетический каучук цис-1,4-полиизопрен довольно легок (плотность 0,90 до 0,91). Полиизопреновый каучук на все 100% состоит из углеводородного каучука (за исключением маслонаполненных марок) в отличие от натурального каучука, который имеет в своем составе протеины, смолы и т.д. (до 6%).

Несмотря на химическую идентичность с натуральным каучуком, синтетический полиизопреновый каучук имеет небольшие различия с преимуществами и недостатками по сравнению с натуральным каучуком. В то время как натуральный каучук не очень однородный в цвете, вязкости и чистоте, синтетический полиизопрен более однородный, легок в переработке, светлее в цвете и более чистый. Но он имеет немного худшие характеристики в прочности сырого полимера (эта характеристика особенно важна при изготовлении шины) и в модуле. Полиизопреновый каучук обладает более высоким удлинением, чем натуральный каучук. Вот небольшие различия свойств вулканизованных каучуков.

Сопоставление некоторых свойств каучуков основных видов каучуков

Сопоставление некоторых свойств каучуков общего и специального назначения представлены на диаграмме ниже. Ось абсцисс характеризует маслостойкость каучуков – ординат – теплостойкость.

Сопоставление некоторых свойств каучуков общего и специального назначения

(а) SBR – бутадиен-стирольный каучук, BR – бутадиеновый каучук, NR – натуральный каучук, IIR – бутилкаучук, EPDM – этилен-пропилен-диеновый каучук, EPM - этилен-пропиленовый каучук, CR – хлоропреновый каучук, CO – эпихлоргидриновый каучук, ACM – акрилатный каучук, NBR – бутадиен-нитрильный каучук, CSM, EACM, CR, MQ, FMQ

Области применения отдельных видов синтетических каучуков

Бутадиен-стирольный каучук

Бутадиен-стирольный каучук, эмульсионный и растворный, остается основным в индустрии синтетических каучуков и занимает около 50% всего мирового потребления синтетических каучуков. Бутадиен-стирольный каучук обладает отличным балансом функциональных качеств во многих областях применения. Он находит широкое применение в шинах, автомобильных запчастях, уплотнителях, прокладках, уплотнительных кольцах, благодаря отличным свойствам высокой стойкости к истиранию и высокому проценту наполняемости.

75% объема потребления бутадиен-стирольного каучука приходится на сектор шин с максимальной долей потребления в легковых шинах. Значительное количество также используется для производства компонентов автомобилей и резино-технических изделий. Бутадиен-стирольный каучук с высоким содержанием стирола используются в изготовлении подошвы в обувной промышленности.

Полибутадиеновый каучук

Полибутадиеновые каучуки используются в большом количестве в смесях с другими эластомерами, для придания резинам хороших показателей гистерезиса и стойкости к истиранию. Смеси полибутадиена с бутадиен-стирольным или натуральным каучуком широко используются в легковых и грузовых шинах для улучшения устойчивости к растрескиванию. Полибутадиеновый каучук также используется как модификатор в смесях с другими эластомерами для улучшения морозостойких свойств, стойкости к тепловому старению, истиранию и растрескиванию.

Значительное количество полибутадиена используется в резино-техническом производстве (РТИ общего назначения, не включая шины). Его вулканизаты имеют более высокую газонепроницаемость, чем натуральный каучук и сравнимую с натуральным каучуком электрическую стойкость и диэлектрическую прочность. Он также обладает отличными морозостойкими свойствами.

Полибутадиен также используется в смесях для лент, чтобы улучшить стойкость к истиранию и увеличить их долговечность. Типичным примером использования смеси полибутадиена с натуральным каучуком являются смеси для изготовления поверхности конвейерных лент. Использование полибутадиена улучшает стойкость к порезам, разрывам и истиранию.

Полибутадиеновый каучук используется отдельно в нескольких областях промышленности для придания великолепной эластичности и стойкости к истиранию. Примером может служить производство твердых мячей для гольфа и изготовления высоко упругих игрушечных мячей. Также как модификатор стирола для изготовления ударопрочного полистирола (полибутадиен с низким содержание цис).

Основное потребление полибутадиенового каучука идет в шинном производстве (для частичной замены натурального каучука в протекторе шин), в меньшей степени в каркасах и рецептурах боковин. Около 35% общего объема используется для ударопрочного полистирола, ABS (акрилонитрил-бутадиенстирольных пластиков) и других видов пластиков. Благодаря широкому применению полибутадиеновый каучук вышел на вторую позицию среди всего объема синтетических каучуков, следуя за бутадиен-стирольным каучуком.



Loading...Loading...