Титан физические свойства. Атомная и молекулярная масса титана

Поскольку титан представляет собой металл, обладающий хорошей твердостью, но невысокой прочностью в промышленном производстве большее распространение получили сплавы на основе титана. Сплавы с различной структурой зерна, отличаются между собой строением и типом кристаллической решетки.

Их можно получить при обеспечении в процессе производства определенных температурных режимов. А путем добавления к титану различных легирующих элементов можно получать сплавы, характеризующиеся более высокими эксплуатационными и технологическими свойствами.

При добавлении легирующих элементов и различных типах кристаллических решеток в структурах на основе титана можно получить более высокую по сравнению с чистым металлом жаропрочность и прочность . При этом полученные структуры характеризуются небольшой плотностью, хорошими антикоррозионными свойствами и хорошей пластичностью, что расширяет сферу их использования.

Характеристика титана

Титан представляет собой легкий металл, сочетающий в себе высокую твердость и небольшую прочность , что усложняет его обработку. Температура плавления этого материала в среднем составляет 1665°С . Материал характеризуется невысокой плотностью (4,5г/см3) и хорошей антикоррозионной способностью.

На поверхности материала образуется окисная пленка толщиной в несколько нм, что исключает процессы коррозии титана в морской и пресной воде, атмосфере, окислению под действием органических кислот, процессов кавитации и в конструкциях, находящихся под напряжением.

В обычном состоянии материал не обладает жаропрочностью, для него характерно явление ползучести при комнатных температурах. Однако в условиях холода и глубокого холода материал характеризуется высокими прочностными характеристиками.

Титан отличается низким значением модуля упругости, это ограничивает его использование для изготовления конструкций, в которых необходима жесткость. В чистом состоянии металл обладает высокими противорадиационными характеристиками и не обладает магнитными свойствами.

Титан характеризуется хорошими пластическими свойствами и легко поддается обработке при комнатных температурах и выше. Сварные швы из титана и его соединений обладают пластичностью и прочностью. Однако, для материала свойственны интенсивные процессы поглощения газов при нахождении в неустойчивом химическом состоянии, возникающем при повышении температуры. Титан в зависимости от газа, с которым соединяется, образует гидридные, оксидные, карбидные соединения, плохо влияющие на его технологические свойства.

Материал характеризуется плохой приспособленностью к обработке резанием , в результате ее проведения он в течение короткого промежутка времени прилипает на инструмент , что снижает его ресурс. Проведение обработки титана резанием возможно с использованием охлаждения интенсивного типа на больших подачах, при низких скоростях обработки и значительной глубине резания. Кроме того в качестве инструмента для обработки выбирается быстрорежущая сталь.

Материал характеризуется высокой химической активностью, что обуславливает использование инертных газов при проведении работ по выплавке, литье титана или проведении дуговой сварки.

В процессе использования титановые изделия необходимо защищать от возможного поглощения газов при вероятности повышения эксплуатационных температур.

Титановые сплавы

Широкое распространение получили структуры на основе титана с добавлением таких легирующих элементов, как:

Структуры, получаемые деформированием сплавов титановой группы, используются для изготовления изделий, проходящих механическую обработку.

По прочности различают:

  • Высокопрочные материалы, прочность которых составляет более 1000МПа;
  • Структуры, обладающие средней прочностью, в диапазоне значений от 500 до 1000МПа;
  • Низкопрочные материалы, с прочностью ниже 500МПа.

По области использования:

  • Структуры, обладающие коррозионной стойкостью.
  • Конструкционные материалы;
  • Жаропрочные структуры;
  • Структуры с высокой стойкостью к действию холода.

Виды сплавов

По входящим в состав легирующим элементам выделяют шесть основных видов сплавов.

Сплавы типа α-сплавы

Сплавы типа α-сплавы на основе титана с применением для легирования алюминия, олова, циркония, кислорода характеризуются хорошей свариваемостью, понижением границы застывании титана и увеличением его жидкотекучести . Указанные свойства позволяют использовать так называемые α-сплавы для получения заготовок фасонным способом или при отливке деталей . Получаемые изделия этого типа обладают высокой термической стойкостью, что позволяет использовать их для изготовления ответственных деталей, работающих в температурных условиях до 400°С .

При минимальных количествах легирующих элементов соединения называются техническим титаном. Он характеризуется хорошей термической устойчивостью, и обладают отличными сварными характеристиками при проведении сварочных работ на различных аппаратах. Материал обладает удовлетворительными характеристиками по возможности обработки резанием. Не рекомендуется повышение прочности для сплавов этого типа с применением термообработки, материалы этого типа используются после проведения отжига. Сплавы, содержащие цирконий обладают наибольшей стоимостью и отличаются высокой технологичностью.

Формы поставки сплава представлены в виде проволоки, труб, прутков сортового проката, поковок. Наиболее используемым материалом этого класса является сплав ВТ5-1 , характеризующийся средней прочностью, жаропрочностью до 450°С и отличными характеристиками при работе в условиях низких и сверхнизких температур. Этот сплав не практикуется упрочнять термическими способами, однако его использование в условиях низких температур предполагает минимальное количество легирующих материалов.

Сплавы типа β-сплавы

Сплавы β-типа получаются при легировании титана ванадием, молибденом, никелем, при этом получаемые структуры характеризуются повышением прочности в диапазоне от комнатных до отрицательных температур по сравнению с α-сплавами. При их использовании увеличивается жаропрочность материала, его температурная стабильность, однако при этом наблюдается снижение пластических характеристик сплавов этой группы.

Для получения устойчивых характеристик сплавы этой группы должны быть легированы значительным количеством указанных элементов. Исходя из высокой стоимости этих материалов, широкого промышленного распространения структуры этой группы не получили. Для сплавов этой группы характерно противодействие ползучести, возможность повышения прочности различными способами, возможность механической обработки. Однако, с увеличением рабочей температуры до 300°С сплавы этой группы приобретают хрупкость .

Псевдо α-сплавы

Псевдо α-сплавы , большую часть легирующих элементов которых составляют компоненты α-фазы с добавлениями до 5% элементов группы β . Наличие β-фазы в сплавах добавляет к преимуществам легирующих элементов α-группы свойство пластичности. Увеличение жаростойкости сплавов этой группы достигается использованием алюминия, кремния и циркония. Последний из перечисленных элементов оказывает положительное воздействие на растворение β-фазы в структуре сплава. Однако, для этих сплавов характерны и недостатки , среди которых хорошее поглощение титаном водорода и образование гидридов, с возможностью возникновения водородной хрупкости. Водород фиксируется в соединении в форме гидридной фазы, уменьшает вязкость и пластические характеристики сплава и способствует увеличению хрупкости соединения.Одним из наиболее распространенных материалов этой группы является титановый сплав марки ВТ18 , обладающий жаропрочностью до 600°С, обладает хорошими характеристиками пластичности. Перечисленные свойства позволяют применять материал для изготовления деталей компрессоров в авиастроении . Термическая обработка материала включает отжиг при температурах около 1000°С с дальнейшим воздушным охлаждением или двойной отжиг, позволяющий на 15% увеличить его сопротивление разрыву.

Псевдо β- сплавы

Псевдо β- сплавы характеризуются наличием после проведения закалки или нормализации наличием только β-фазы. В состоянии отжига структура этих сплавов представлена α-фазой со значительным количеством легирующих компонентов группы β . Эти сплавы характеризуются самым большим среди титановых соединений показателем удельной прочности , обладают низкой термической стойкостью. Кроме того, сплавы этой группы мало подвержены хрупкости при воздействии водорода, однако обладают высокой чувствительностью к содержанию углерода и кислорода, влияющим на снижение вязких и пластичных свойств сплава. Эти сплавы характеризуются плохой свариваемостью, широким диапазоном механических характеристик, обуславливаемых неоднородностью состава и низкой стабильностью при работе в условиях высоких температур .Форма выпуска сплава представлена листами, поковками, прутками и полосовым металлом, с рекомендуемым использованием в течение длительного времени при температурах не выше 350°С. Примером такого сплава является ВТ 35 , для которого свойственна обработка давлением при воздействии температуры. После выполнения закалки материал характеризуется высокими пластическими характеристиками и способностью к деформации в холодном состоянии. Проведение операции старения для этого сплава обуславливает многократное упрочнение при наличии высокой вязкости.

Сплавы типа α+β

Сплавы типа α+β с возможными включениями интерметаллидов характеризуются меньшей хрупкостью при воздействии гидритов по сравнению со сплавами 1 и 3 групп. Кроме того, для них свойственна большая технологичность и удобство обработки с использованием различных методов по сравнению со сплавами α-группы. При проведении сварки с использованием материала этого типа для повышения пластичности шва после окончания операции требуется проведение отжига. Материалы этой группы изготавливаются в форме лент, листового металла, поковок, штамповок и прутков. Самым распространенным материалом этой группы является сплав ВТ6 , характеризуется хорошей деформируемостью при температурной обработке, сниженной вероятностью водородной хрупкости. Из этого материала производят несущие детали самолетов и жаропрочные изделия для компрессоров двигателей в авиации. Практикуется использование отожженных или упрочненных температурной обработкой сплавов ВТ6. Например, детали тонкостенного профиля или листовые заготовки отжигают при температуре 800°С в дальнейшем охлаждая на воздухе или оставляя в печи.

Сплавы из титана на базе интерметаллидов.

Интерметаллиды — сплав 2ух металлов, один из которых титан.

Получение изделий

Структуры, получаемые литьем, осуществляемым в специальные формы из металла в условиях ограничения доступа активных газов, учитывая высокую активность титановых сплавов при повышении температуры. Сплавы, получаемые при помощи литья, обладают худшими свойствами, по сравнению со сплавами, получающимися методом деформации. Термическая обработка с целью повышения прочности для сплавов этого типа не проводится, поскольку оказывает существенное воздействие на показатели пластичности этих структур.

ТИТАН И ЕГО СПЛАВЫ

Титан относится к группе тугоплавких металлов, его температура плавления равна 1668°С. Титан имеет две аллотропические модификации α и ß. Модификация α низкотемпературная и существует при нагреве 882,5°С, имеет гексагональную решетку. При темпертуре 882,5°С α-модификация переходит в ß - модификацию, имеющую объемноцентрированную кубическую рещетку. При переходе α-титана в ß - титан объем металла несколько уменьшается, а электропроводность скачкообразн возрастает.

Основными достоинствами титана являются плотность (4,5 г/см 3), большая коррозионная стойкость и высокая механическая прочность. Несмотря на то, что титан химически весьма активен и легко реагирует с большим количеством элементов, он обладает высокой коррозионной стойкостью благодаря защитному действию образующейся на его поверхности прочной и плотной окисной пленки. В большинстве коррозионных сред титан и его сплавы имеют более высокую стойкость, чем кислотостойкие стали и алюминий.

При введении легирующих элементов можно получать сплавы, обладающие высокой механической прочностью. Основными легирующими элементами являются Al, Sn, Мn, Cr, Мо, V. Легирующие элементы влияют на устойчивость аллотропических модификаций титана. В соответствии с влиянием легирующих элементов на аллотропические превращения титановые сплавы классифицируются по структуре следующим образом:

    1) а-титановые сплавы, структура которых состоит из α-фазы (например, сплав ВТ5-1);

    2) α+ß - сплавы, в структуре которых присутствуют обе фазы (ВТЗ-1, ВТ6);

    3) ß - сплавы, структура которых состоит из механически стабильной ß - фазы (ВТ15); двухфазные (α+ß)-сплавы и ß - сплавы в отличие от α-сплавов упрочняются термической обработкой.

Сплавы титана обладают не только более высокой механической прочностью, но и большей коррозионной стойкостью, чем чистый титан. Титан и его сплавы хорошо поддаются горячей и холодной обработке давлением, хорошо свариваются в инертной среде, но обладают низкими антифрикционными свойствами и, сравнительно со сталью, хуже обрабатываются резанием.

Сплавы титана широко применяют в авиационной и ракетной технике, в химической промышленности, цветной металлургии и других отраслях, где использование титановых сплавов определяется их ценными антикоррозионными свойствами. Так, титановые теплообменники, работающие в азотной кислоте, имеют скорость коррозии в 60 раз меньшую, чем аналогичные теплообменники из нержавеющей стали. Из титана изготавливают оборудование для хлорной промышленности, гребные винты и т.п.

Титан (Ti) (Titanium) - химический элемент с порядковым номером 22 в периодической системе элементов Д.И. Менделеева, атомный вес 47, 88, легкий серебристо-белый металл. Плотность 4, 51 г/с м³, tпл.=1668+ (-)5°С, tкип.=3260°С.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза - железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. С повышением температуры до 350°С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана - существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивлеиие, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0, 45 К он становится сверхпроводником.

Титан - парамагнитный металл. У парамагнитных веществ магнитная восприимчивость при нагревании обычно уменьшается. Титан составляет исключение из этого правила - его восприимчивость существенно увеличивается с температурой.

Для технического титана марок ВТ-00 и ВТ1-0 плотность приблизительно 4, 32 г/с м³. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапозоне температур (от -290°С до 600°С).

Металл обладает рядом полезных свойств, делающих его одним из основных материалов в отдельных отраслях промышленности. Титановый прокат используется в ракетостроение и авиастроение, химической промышленности, судостроение, машиностроение

Так например, титановый лист и титановый пруток применяется при создании корпусов атомных подводных лодок;
титановые трубы используются в химической промышленности вследствие их высоких антикоррозионных характеристик и химической инертности к реактивам;
титановая проволока используется как присадочная проволока для создания каркасов, форм, корпусов изтитановых сплавов стратегического назначения.

Титановая проволока часто используется в медицинской промышленности, в частности стоматологии. К полезным свойствам продукции из титанового проката можно отнести высокую механическую прочность, коррозионную стойкость (стоек во многих химически активных средах), жаропрочность (t пл = 1668 °С), а также малую плотность (4, 505 г/см 3). Основные физические и химические свойства титана можно посмотреть в данной таблице. Но титан имеет и свои недостатки. Одним из основных недостатков является высокая стоимость производства. Плавка титана может осуществляться только в вакууме или среде инертных газов, т.к. данный металл активно взаимодействует (особенно в жидком состоянии) со всеми газами, составляющими атмосферу. Также титановая продукция имеет плохие антифрикционные свойства, высокую склонность к водородной хрупкости и солевой коррозии, плохую обрабатываемость резанием и свариваемость.

Основой производства технического титана и его сплавов служит титановая губка, получаемая магниетермическим методом. Титановая губка - пористое серое вещество с насыпной массой 1, 5-2, 0 г/см 3 и очень высокой вязкостью.

В зависимости от содержания примесей технический титан разделяют на несколько сортов:GR1 (самый чистый титан),GR2 (более загрязненный).

Сплавы титана

По использованию в качестве конструкционного материала титан находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность титана делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применеие в технике ввиду своей высокой мехнической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость титана и его сплавов во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным материалом, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах (см. рис.2). Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применення в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменникн, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостоении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид титана обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид титана - важный компонент сверхтвердых материалов для обработки металлов. Нитрид титана применяется для покрытия инструментов

В настоящее время известно довольно большое разнообразие титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее употребляемые легирующие элементы в титановых сплавах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

Титановый сплав ВТ5 содержит помимо титана 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается.

Из титана (сплава) ВТ5 получают титановые прутки, титановая проволока и титановые трубы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Изтитанового сплава ВТ5-1 изготовляют все виды полуфабрикатов, получаемых обработкой давлением: титановые листы, плиты, поковки, штамповки, профили, титановые трубы и титановая проволока. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных до 450 °С.

Титановые сплавы ОТ4 и ОТ4-1 помимо титана содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Титан данных марок идеет в основном на изготовление титановых листов, лент и полос, а также изготовляются титановые прутки, поковки, профили и титановые трубы. Из титановых сплавов ОТ4 иОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные сплавы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.

Титановый сплав ВТ20 разрабатывали как более прочный листовой сплав по сравнению с ВТ5-1. Упрочнение сплаваВТ20 обусловлено его легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия. Титан ВТ20 отличается высокой жаропрочностью. Он хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

Титановый сплав ВТ3-1 относится к системе Ti - Al - Cr - Mo - Fe - Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. СплавВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 - 450 °С; это жаропрочный сплав с довольно высокой длительной прочностью. Из него поставляют титановые прутки, профили, плиты, поковки, штамповки.

Титан и его сплавы

Плавится титан при температуре 1660°С, аллотропичен, вредные примеси N, C, O, H. Пленка TiO2 защищает титан от окисления, коррозии в любой воде, некоторых кислотах. Он плавится, льется, сваривается в среде аргона, подвергается ОМД. Из титана изготавливают лист, трубы, профиль, проволоку. Сплавы его с Fe, Al, Mn, Cr, Sn, V, Si, Ga, Ge, La, Nb, Ta, Zr, W, Mo, Co, Si, имеют повышенную прочность, жаропрочность, коррозионную стойкость.Титановые сплавы термообрабатываются.

Титановые сплавы деформируются, льются, изготавливаются из порошков, закаливаются, отпускаются, хорошо мехобрабатываются.

Деформируемые сплавы титана:

− ά – сплавы: ВТ5, ВТ-5-1, ОТ-4;

− ά – β сплавы: ВТ-6, ВТ14, ВТ8; ВТ15

Литейные сплавы: ВТ5Л, ВТ6Л, ВТ14Л, ВТ3-1Л

Порошковые сплавы титана получают из порошков прессованием, они прочны, пластичны.

Из титановых сплавов изготавливают обшивку самолетов, морских судов, подводных лодок, корпуса ракет, двигателей, деталей турбин, компрессоров, гребные винты, баллоны для сжиженных газов, емкости для химических средств и много других изделий. Титановые сплавы можно подвергать, отжигу, закалке, старению и ХТО. Отжиг α – сплавов проводят при 800 – 850 0С, а α + β – сплавов – при 750 -800 0С. Вакуумный отжиг позволяет уменьшить содержание водорода, что приводит к повышению ударной вязкости, уменьшению разрушений и растрес- кивания.

При высокой концентрации легирующего элемента и закалке возникает мартенситная α׀׀ – фаза с ромбической решеткой и ω – фаза с гексагональной структурой. В процессе старения закаленных сплавов происходит их упрочнение, обусловленное распадом α׀׀ и β – фаз. Деформируемые сплавы титана хорошо обрабатываются давлением в горячем состоянии, свариваются, обладают высокой сопротивляемости коррозии.

Характерные особенности титана – малая плотность 4,51 кг/дм3 , высокая прочность, которая сохраняется до 6000С, коррозионная стойкость. Они определяют область его применения. Титановые сплавы сочетают высокую прочность (σВ= 800-1500 МПа) с хорошей пластичностью (δ= 12- 25%), относительно хорошую жаропрочность до 600- 7000С, высокую коррозионную стойкость во многих агрессивных средах кроме HCL, HF. α- титановые сплавы не стареют и используются в криогенных установках до гелиевых температур (-2720С). Одним из недостатков титановых сплавов является их плохая обрабатываемость режущим инструментом.

Титан. Изобретение титана. Титан и его сплавы.

Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Англии и принялся его исследовать. В песке священник обнаружил крупицы черного блестящего минерала, притягивающегося обыкновенным магнитом. Полученный в 1925 г. Ван Аркелем и де Буром иодидным методом чистейший титан оказался пластичным и технологичным металлом со многими ценными свойствами, которые привлекли к нему внимание широкого круга конструкторов и инженеров. В 1940 г. Кролль предложил магниетермический способ извлечения титана из руд, который является основным и в настоящее время. В 1947 г. были выпущены первые 45 кг технически чистого титана.

В периодической системе элементов Менделеева титан имеет порядковый номер 22. Атомная масса природного титана, вычисленная по результатам исследований его изотопов, составляет 47,926. Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Всего сейчас известно 13 изотопов элемента № 22. Природный титан состоит из смеси пяти стабильных изотопов, наиболее широко представлен титан-48, его доля в природных рудах 73,99%. Титан и другие элементы подгруппы IVВ очень близки по свойствам к элементам подгруппы IIIВ (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ – ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместе с этими элементами. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди- три- и, тетрасоединения, с серой и элементами ее группы (селеном, теллуром) – моно- и дисульфиды, с кислородом – оксиды, диоксиды и триоксиды.

Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами – интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами. Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных – золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности и прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана во многих агрессивных средах, в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.

Титан весьма тугоплавкий металл. Долгое время считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Хейс установили температуру плавления для чистого элементарного титана. Она составила 1668±3° С. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, рений, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте. Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан – легкий металл, его плотность при 0° С составляет всего 4,517 г/см8, а при 100° С – 4,506 г/см3. Титан относится к группе металлов с удельной массой менее 5 г/см3. Сюда входят все щелочные металлы (натрий, кадий, литий, рубидий, цезий) с удельной массой 0,9–1,5 г/см3, магний (1,7 г/см3), алюминий (2,7 г/см3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз их превосходит.). Титан обладает значительной твердостью: он в 12 раз тверже алюминия, в 4 раза–железа и меди. Еще одна важная характеристика металла – предел текучести. Чем он выше тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам. Предел текучести у титана почти в 18 раз выше, чем у алюминия. Удельная прочность сплавов титана может быть повышена в 1,5–2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

В отличие от большинства металлов титан обладает значительным электрическим сопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия – 60, железа и платины –15, а титана–всего 3,8. Титан – парамагнитный металл, он не намагничивается, как железо, в магнитном поле, но и не выталкивается из него, как медь. Его магнитная восприимчивость очень слаба, это свойство можно использовать при строительстве. Титан обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(мК), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз–магния, в 17–20 раз–алюминия и меди. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных материалов: при 20 С он в 1,5 раза ниже чем у железа, в 2 - у меди и почти в 3 - у алюминия. Таким образом, титан – плохой проводник электричества и тепла.

Сегодня титановые сплавы широко применяют в авиационной технике. Титановые сплавы в промышленном масштабе впервые были использованы в конструкциях авиационных реактивных двигателей. Применение титана в конструкции реактивных двигателей позволяет уменьшить их массу на 10...25%. В частности, из титановых сплавов изготавливают диски и лопатки компрессора, детали воздухозаборника, направляющего аппарата и крепежные изделия. Титановые сплавы незаменимы для сверхзвуковых самолетов. Рост скоростей полета летательных аппаратов привел к повышению температуры обшивки, в результате чего алюминиевые сплавы перестали удовлетворять требованиям, которые предъявляются авиационной техникой сверхзвуковых скоростей. Температура обшивки в этом случае достигает 246...316 °С. В этих условиях наиболее приемлемым материалом оказались титановые сплавы. В 70-х годах существенно возросло применение титановых сплавов для планера гражданских самолетов. В среднемагистральном самолете ТУ-204 общая масса деталей из титановых сплавов составляет 2570 кг. Постепенно расширяется применение титана в вертолетах, главным образом, для деталей системы несущего винта, привода, а также системы управления. Важное место занимают титановые сплавы в ракетостроении.
Благодаря высокой коррозионной стойкости в морской воде титан и его сплавы находят применение в судостроении для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении. Постепенно области применения титана расширяются. Титан и его сплавы применяют в химической, нефтехимической, целлюлозно-бумажной и пищевой промышленности, цветной металлургии, энергомашиностроении, электронике, ядерной технике, гальванотехнике, при производстве вооружения, для изготовления броневых плит, хирургического инструмента, хирургических имплантатов, опреснительных установок, деталей гоночных автомобилей, спортинвентаря (клюшки для гольфа, снаряжение альпинистов), деталей ручных часов и даже украшений. Азотирование титана приводит к образованию на его поверхности золотистой пленки, по красоте не уступающей настоящему золоту.

Титан и его сплавы обладают высокой коррозионной стойкостью в атм. условиях, пресной и морской воде, растворах большинства хлоридов, гипохлоритов, двуокиси хлора и мн. солей минеральных к-т как при обычной, так и при повышенных темп-рах. Высокой коррозионной стойкостью титан и его сплавы обладают также в кислых окислит. средах (азотная и хромовая к-ты и др.) и в растворе щелочей. В неокислит, кислотах (серной, соляной) титан имеет удовлетворит. коррозионную стойкость при обычных темп-pax и концентрации к-т до 8- 10%. С повышением темп-ры, концентрации к-т и щелочей скорость коррозии титана резко возрастает. Для серной к-ты наблюдаются два максимума скорости коррозии, соответствующие 40- и 75%-ной концентрации. В 40%-ной серной к-те процесс коррозии идет с выделением водорода, такая к-та характеризуется наибольшей электропроводностью и максим, концентрацией водородных ионов. В 75%-ном растворе процесс коррозии сопровождается восстановлением серной к-ты до H3S и свободной серы, а при высоких концентрациях (80- 90 %) выделяются S02 и свободная сера. В фосфорной к-те титан относительно более стоек и сохраняет высокую коррозионную стойкость до 30%-ного раствора, с повышением концентрации скорость коррозии усиливается. Добавки окислителей (K2Cr207; HNOs; Fe+ + + ; Си + +) резко снижают скорость коррозии титана и его сплавов в соляной и серной к-тах.

Титана: α-титан - гексагональная, β-титан - кубическая...

– элемент 4 группы 4 периода. Переходный металл, проявляет и основные, и кислотные свойства, довольно широко распространен в природе – 10 место. Наиболее интересным для народного хозяйства является сочетание высокой твердости металла и легкости, что делает его незаменимым элементом для авиастроения. Данная статья расскажет вам о маркировке, легирующих и иных свойствах металла титана, даст общую характеристику и интересные факты о нем.

По внешнему виду металл больше всего напоминает сталь, однако механические его качества выше. При этом титан отличается малым весом – молекулярная масса 22. Физические свойства элемента изучены довольно хорошо, однако сильно зависят от чистоты металла, что приводит к существенным отклонениям.

Кроме того, имеет значение его специфические химические свойства. Титан устойчив к щелочам, азотной кислоте, и в то же время бурно взаимодействует с сухими галогенами, а при более высокой температуре – с кислородом и азотом. Хуже того, он начинает поглощать водород еще при комнатной температуре, если имеется активная поверхность. А в расплаве впитывает кислород и водород настолько интенсивно, что расплавление приходится проводить в вакууме.

Еще одна важная особенность, определяющая физические характеристики – существование 2 фаз состояния.

  • Низкотемпературная – α-Ti имеет гексагональную плотноупакованную решетку, плотность вещества – 4,55 г/куб. см (при 20 С).
  • Высокотемпературная – β-Ti характеризуется объемно-центрированный кубической решеткой, плотность фазы, соответственно, меньше – 4, 32 г/куб. см. (при 900С).

Температура фазового перехода – 883 С.

В обычных условиях металл покрывается защитной оксидной пленкой. При ее отсутствии титан представляет большую опасность. Так, титановая пыль может взрываться, температура такой вспышки 400С. Титановая стружка является пожароопасным материалом и хранится в специальной среде.

О структуре и свойствах титана рассказывает видео ниже:

Свойства и характеристики титана

Титан на сегодня является самым прочным среди всех существующих технических материалов, поэтому, несмотря на сложность получения и высокие требования по безопасности к , применяется достаточно широко. Физические характеристики элемента довольно необычны, однако очень сильно зависят от чистоты. Так, чистый титан и сплавы активно применяются в ракето- и авиастроении, а технический непригоден, так как из-за примесей теряет прочность при высоких температурах.

Плотность металла

Плотность вещества изменяется в зависимости от температуры и фазы.

  • При температурах от 0 до температуры плавления уменьшается от 4,51 до 4,26 г/куб. см, причем во время фазового перехода повышаете на 0,15%, а затем вновь уменьшается.
  • Плотность жидкого металла составляет 4,12 г/куб. см, а затем уменьшается с повышением температуры.

Температуры плавления и кипения

Фазовый переход разделяет все свойства металла на качества, которые может проявлять α- и β-фазы. Так, плотность до 883 С, относится к качествам α-фазы, а температуры плавления и кипения – к параметрам β-фазы.

  • Температура плавления титана (в градусах) составляет 1668+/-5 С;
  • Температура кипения достигает 3227 С.

Горение титана рассмотрено в этом видеоролике:

Механические особенности

Титан примерно в 2 раза прочнее железа и в 6 раз – алюминия, что и делает его столь ценным конструкционным материалом. Показатели относятся к свойствам α-фазы.

  • Предел прочности вещества при растяжении составляет 300–450 МПа. Показатель можно увеличить до 2000 МПа, добавив некоторые элементы, а также прибегнув к специальной обработке – закалке и старению.

Интересно то, что высокую удельную прочность титан сохраняет и при самых низких температурах. Более того, при понижении температуры прочность на изгиб растет: при +20 С показатель составляет 700 МПа, а при -196 – 1100 МПа.

  • Упругость металла относительно невелика, что является существенным недостатком вещества. Модуль упругости при нормальных условиях 110,25 ГПа. Кроме того, титану свойственна анизотропия: упругость по разным направлениям достигает разного значения.
  • Твердость вещества по шкале НВ составляет 103. Причем показатель это усредненный. В зависимости от чистоты металла и характера примесей твердость может быть и выше.
  • Условный предел текучести составляет 250–380 МПа. Чем выше этот показатель, тем лучше изделия из вещества противостоят нагрузкам и тем больше сопротивляются износу. Показатель титана превосходит показатель алюминия в 18 раз.

По сравнению с другими металлами, имеющими такую же решетку, металл обладает очень приличной пластичностью и ковкостью.

Теплоемкость

Металл отличается низкой теплопроводностью, поэтому в соответствующих областях – изготовление термоэлектродов, например, не применяется.

  • Теплопроводность его составляет 16,76 l , Вт/(м × град). Это меньше чем у железа в 4 раза и в 12 раз меньше, чем у .
  • Зато коэффициент термического расширения у титана ничтожен при нормальной температуре и возрастает при повышении температуры.
  • Теплоемкость металла составляет 0,523 кдж/(кг·К).

Электрические характеристики

Как чаще всего и бывает, низкая теплопроводность обеспечивает и низкую электропроводность.

  • Удельное электросопротивление металла весьма велико – 42,1·10 -6 ом·см в нормальных условиях. Если считать проводимость серебра равной 100%, то проводимость титана будет равна 3,8%.
  • Титан является парамагнитом, то есть, его нельзя намагничивать в поле, как железо, но и выталкиваться из поля, как он не будет. Свойство это с понижением температуры линейно уменьшается, но, пройдя минимум, несколько увеличивается. Удельная магнитная восприимчивость составляет 3,2 10 -6 Г -1 . Стоит отметить, что восприимчивость, так же как и упругость образует анизотропию и изменяется в зависимости от направления.

При температуре 3,8 К титан становится сверхпроводником.

Коррозионная стойкость

В нормальных условиях титан отличается очень высокими антикоррозийными свойствами. На воздухе его покрывает слой оксида титана толщиной в 5–15 мкм, что и обеспечивает отличную химическую инертность. Металл не корродирует в воздухе, морском воздухе, морской воде, влажном хлоре, хлорной воде и многочисленных других технологических растворах и реагентах, что делает материал незаменимым в химической, бумагоделательной, нефтяной промышленности.

При повышении температуры или сильном измельчении металла картина резко меняется. Металл реагирует едва ли не со всеми газами, входящими в состав атмосферы, а в жидком состоянии еще и впитывает их.

Безопасность

Титан является одним из самых биологически инертных металлов. В медицине он применяется для изготовления протезов, так как отличается стойкостью к коррозии, легкостью и долговечностью.

Диоксид титана не столь безопасен, хотя используется куда чаще – в косметологической, пищевой промышленности, например. По некоторым данным – UCLA, исследования профессора патологии Роберта Шистла, наночастицы диоксида титана воздействуют на генетический аппарат и могут способствовать развитию рака. Причем через кожный покров вещество не проникает, поэтому применение солнцезащитных средств, в составе которых есть диоксид, опасности не представляет, а вот вещество, попадающее внутрь организма – с пищевыми красителями, биологическими биодобавками, может оказаться опасным.

Титан – уникально прочный, твердый и легкий металл с очень интересными химическими и физическими свойствами. Это сочетание настолько ценно, что даже сложности с выплавкой и очисткой титана производителей не останавливают.

О том, как отличить титан от стали, этот видеосюжет и расскажет:

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

Этот металл серебристо-серого цвета (см. фото), не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана

Действие макроэлемента на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом . Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма - какова потребность в химическом элементе?

Суточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана

Состояния, при которых бы наблюдался недостаток металла, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники?

Элемент попадает в организм человека в основном с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению

Показания к применению элемента, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.



Loading...Loading...