Сколько градусов в воде подо льдом. Температура воды и ледовые явления

В средней полосе России фенологическая (природная) зима наступает обычно с середины ноября. К этому времени заканчивается столь нелюбимый рыболовами период «межсезонья» с его перепадами атмосферного давления и температуры, чередованием заморозков и дождей, капризами многих видов рыб. Почитатели зимней рыбалки считают собственно зимой временной отрезок с момента образования устойчивого ледового покрова до распаления льда (с середины ноября по конец марта). Иногда ледовый покров на водоемах появляется на месяц-полтора позже начала календарной зимы (где-то в начале-середине января). Чаще это происходит в южных районах России. В некоторых регионах СНГ на реках и озерах вообще не устанавливается ледовый покров и разница между затянувшейся осенью и незаметно наступившей зимой практически незаметна.

С наступлением зимы в водных си­стемах происходят значительные из­менения, влияющие на поведение подводных обитателей.

Ледовый покров, освещенность и поведение рыб.

Значение света в жизни животных трудно переоценить. Свет «господ­ствует» над всеми другими экологическими факторами. Ни один фактор среды не претерпевает таких изме­нений, как освещенность: в течение суток ее интенсивность изменяется в десятки миллионов раз (от сотен люк­сов до десятитысячных долей люкса). По своей интенсивности и длитель­ности освещенность играет для во­дных живых организмов роль сигнала начала неких перемен в окружающей среде (наступление утра, ночи, нача­ло прогрева воды и-т. д.), что приво­дит к изменению поведения рыб.

На протяжении осени и начала зимы происходит постепенное уменьшен ние светлого периода суток: в ноябре долгота светового дня в среднем не превышает 9 часов 10 минут. Установ­ление ледового покрова, выпадение снега, преобладание пасмурных дней еще больше снижает освещенность водоемов. Долгие четыре месяца в подводном царстве властвует полуть­ма…

Интересно поведение рыб в на­чальный период зимы. Многие виды теплолюбивых рыб (сазан (карп), ка­рась, линь, белый амур) еще в октя­бре-ноябре собираются в огромные стаи и отправляются на так называе­мые зимовальные ямы. В полуоцепе­нении, практически не двигаясь, они проведут здесь около трех месяцев (до конца февраля). Сазаны стоят на глубине очень плотно, порой до 15-20 особей на 1 м3, рядом находятся же­рехи, язи, лини. При больших морозах с ними соседствуют и лещи, но с пере­меной атмосферного давления и при ослаблении морозов стаи лещей по­кидают зимовальные ямы и «разбре­даются» по водоему в поисках корма.

Опровергая общепринятую точку зрения о местоположении зимней «лежки» сомов, речные великаны за­нимают места около зимовальных ям - на выходах из глубин, границах ям и повышений дна. Такое размещение усатых хищников объясняется тем, что в самой яме уже спустя месяц после образования ледового покрова резко изменяется кислородный режим, что эта рыба в отличии от «толстокожего» сазана (карпа) тяжело переносит.

Окуни, щуки, судаки после осеннего ската на более глубокие места (уход от высокой прозрачности воды и значительной освещенности) с уста­новлением ледового покрова воз­вращаются на места сентябрьских охот. Тем более, что плотва, карась серебристый, верховка и уклейка за редкими исключениями, практически не уходят с облюбованных еще летом мест обитания.

В мелких и малокормных водоемах карась серебристый зарывается под листья или «ныряет» в ил. Правда, только в северных районах нахожде­ние его там продолжительно, в более южных местностях двигательная активность карася возобновляется уже при увеличении температуры воды на 3,5°С (февраль). Поэтому во время не слишком холодных зим в Украине, Казахстане и других регионах под­ледная ловля серебристого карася - обычное дело.

Появление ледового покрова вносит свои коррективы в поведение хищ­ных рыб. Различают такое разделе­ние хищников по отношению к свету: окунь считается сумеречно-дневным хищником, щука - сумеречным, судак - глубокосумеречным.
Осенью окуни и щуки питаются кру­глосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и пресле­дуют жертв. «Сумеречное» питание хищников происходит при освещен­ности от сотен до десятых долей люк­сов (вечером) и наоборот (утром). Судак может пользоваться зрением в тех условиях, когда другие рыбы ви­деть не могут. Сетчатка глаза хищника содержит сильно отражающий свет пигмент - гуанин, который увеличива­ет ее чувствительность. Охота судака за мелкими стайными рыбами наи­более успешна при глубоко сумереч­ной освещенности - 0,001 и 0,0001 лк (практически полная темнота).

В сумерках и в предутренние часы у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные обо­ронительные стаи рыб-жертв начинают распадаться, обеспечивая удач­ную охоту хищникам. С наступлением темноты отдельные рыбешки рассре­доточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и за­мирают. Охота хищных рыб на это время прекращается.

В начале зимы ситуация подо льдом меняется. Полутьма «на руку» именно сумеречным хищникам, которые в первые дни установления ледового покрова устраивают деморализо­ванным жертвам «варфоломеевскую ночь». Хищным рыбам уже не надо распределять время своей охоты на раннее утро и вечерние часы. Так на­чинается и продолжается (обычно не очень долго) знаменитый жором хищ­ника «перволедок».
Кстати, зимой резко снижается ре­акция рыб-жертв на угрозу, верховки и уклейки намного слабее реагируют на «запах страха», выделяемый товар­ками при схватывании их хищником.

При поиске хищника на обширных водоемах совсем необязательно ис­кать его на ямах и в коряжниках. На­много чаще его можно обнаружить близ участков льда, свободных от снега: слабый, рассеянный свет, про­никающий на глубину, на протяжении всей зимы привлекает столь любимых судаком уклейку и верховку.

Очищенные от снега участки льда привлекают также и молодь окуней, которая собирается у тускло освещен­ного места «твердой поверхности» во­доема через 15-20 минут. Подводные исследования показали, что влечение к слабому свету испытывают и взрос­лые окуни, которые подходят чуть позже молоди. Причем, в отличие от «недорослей», горбачи избегают осве­щенного участка и барражируют во­круг него в темноте.

Температура воды и поведение рыб.

Температура водной среды - самый значительный природный фактор, который прямо воздействует на уровень обмена веществ пойкилотермных (не­сколько неудачный термин-синоним - «холоднокровных») животных, к ко­торым относятся и рыбы.

Всех рыб по диапазону температур, при котором возможна их нормаль­ная жизнедеятельность, разделяют на теплолюбивых (плотва, сазан (карп), карась, линь, растительноядные виды (толстолобики, белый амур), осетро­вые и прочие) и холодолюбивых (ру­чьевая форель, сиги, лосось, налим и др.).

Обмен веществ у первых предста­вителей наиболее эффективен при высокой температуре. Они наиболее интенсивно питаются и активны при температуре +17-28°С, при пониже­нии температуры воды до +17°С их пищевая активность ослабевает (а зи­мой у многих видов вообще прекра­щается). Предзимье и всю зиму они проводят в малоподвижном состоянии в глубоких местах водоема.

Для холодолюбивых рыб оптимальные температуры +8-16°С. Зимой они активно питаются, а их нерест проис­ходит в осенне-зимний период.

Известно, что к похолоданию и снижению температуры воды рыба «привыкает», перестраивая свой ме­таболизм только за 17-20 суток. При снижении температуры воды с +12°С до +4°С у хариуса, например, вели­чины энергозатрат уменьшаются на 20%.
С понижением температуры воды увеличивается растворимость кисло­рода, поэтому зимой насыщенность воды кислородом достаточно высо­ка.

При длительном понижении темпе­ратуры воды рыбы должны располагать не только достаточным запасом жира как энергетического материала, но и в течение этого периода сохра­нить нормальный обмен веществ.

Рыболовная стратегия зимой.

Почитателей зимней рыбалки в отдельных регионах СНГ порой больше, чем летних любителей порыбачить. Несмотря на непредсказуемые ка­призы погоды и порой необъяснимое отсутствие клева подводных оби­тателей, зимой возможна отличная рыбалка. Следует только четко пред­ставлять, «просчитывать» ситуацию на конкретном водоеме. Надо знать, что на протяжении зимы как минимум 20-35 видов рыб (в разных водоемах по-разному) продолжают интенсив­но откармливаться, порой не взирая даже на перепады атмосферного дав­ления.

Естественно, для каждого конкрет­ного вида нужен свой, особый под­ход, который обязательно принесет удачу рыболову - экспериментатору при наличии у него определенного рыболовного опыта, знания особен­ностей поведения рыб в этот период года и, конечно же, страстного желания поймать свой трофей!..

Гидрологи́ческий режи́м – совокупность закономерно повторяющихся изменений гидрологического состояния водного объекта .

Термин «режим» происходит от франц. regime, из лат. regimen – «управление», «правление», regere – «управлять», «направлять», «исправлять» (восходит к праиндоевр. «reg-» «выпрямлять»).

Любой водный объект и его режим могут быть описаны с помощью некоторого набора гидрологических характеристик. Эти характеристики делятся на несколько групп. Приведём основные:

Кроме того, к числу гидрологических обычно относят и очень важные для описания любого водного объекта такие характеристики, как гидрохимические – минерализацию воды (мг/л) или её соленость (г/кг или ‰), содержание отдельных ионов солей, газов, загрязняющих веществ и др.; гидрофизические – плотность воды (кг/м 3), вязкость воды и др.; гидробиологические – состав и численность водных организмов (экз/м 2) и величину биомассы (г/м 3 , г/м 2) и др.

Совокупность гидрологических характеристик данного водного объекта в данном месте и в данный момент времени определяет гидрологическое состояние этого водного объекта.

Гидрологическое состояние водного объекта подобно погоде применительно к состоянию атмосферы подвержено постоянным пространственно-временным изменениям. Это состояние зависит от множества факторов и определяется характером процессов, происходящих в самом водном объекте, его связью с другими водными объектами, атмосферой, литосферой, влиянием хозяйственной деятельности человека и т. д. Однако вследствие сложности и многофакторности этих процессов и связей и недостаточного знания их природы мы часто вынуждены подходить к оценке гидрологического состояния водного объекта как явлению, подверженному случайным изменениям, которые подчиняются вероятностным законам и поддаются статистическому анализу.

При длительных наблюдениях за любым водным объектом обнаруживаются некоторые закономерности в изменениях его гидрологического состояния, например, в течение года. Совокупность закономерно повторяющихся изменений гидрологического состояния водного объекта – это и есть его гидрологический режим. Некоторым аналогом гидрологического режима применительно к атмосфере можно считать климат.

Сущность гидрологического режима водных объектов – это изменения гидрологических характеристик в пространстве и во времени. Под изменением гидрологических характеристик в пространстве понимают их изменение от места к месту (вдоль, поперёк или по глубине реки , вдоль или по глубине моря или озера и т.д.), от одного водного объекта к другому.

Изменение гидрологических характеристик во времени (временная изменчивость) может быть разных масштабов. Например, выделяют изменчивость вековую (с интервалами времени или периодами, исчисляемыми веками); многолетнюю (периоды колебаний – от нескольких лет до многих десятков лет), внутригодовую, или сезонную (изменения в течение года), кратковременную, имеющую период в несколько суток (например, колебания синоптического масштаба с периодом 3–10 дней), сутки (суточная или внутрисуточная изменчивость), минуты и секунды. Главные причины вековой и многолетней изменчивости гидрологических характеристик – долгопериодные изменения климата, а также воздействие хозяйственной деятельности человека. Основные причины внутригодовых (сезонных) изменений – смена сезонов года; колебаний синоптического масштаба – процессы в атмосфере (перемещение циклонов, антициклонов и атмосферных фронтов), изменчивости суточного масштаба – вращение Земли вокруг оси и сопутствующие ему смена дня и ночи и приливы. Природа колебаний самого малого временного масштаба (минуты, секунды) – волны на поверхности воды, макро- и микротурбулентность в водных потоках.

Гидрологический режим водного объекта – хотя и закономерное, но всё же лишь внешнее проявление некоторых более сложных процессов, свойственных водному объекту, или обусловленных его взаимодействием с другими водными объектами, атмосферой, литосферой. Наблюдая за уровнем или расходом воды в реке, например, и выясняя закономерности их изменений, т. е. изучая их режим, мы пока оставляем в стороне причины этих изменений. Для того чтобы их вскрыть, необходимо изучить уже некоторые как внутренние, так и внешние процессы, воздействующие на режим водного объекта. Поэтому гидрологи изучают не только гидрологический режим водных объектов, но и гидрологические процессы, под которыми понимается совокупность физических, химических и биологических процессов, определяющих закономерности формирования гидрологического состояния и режима водного объекта.

Чтобы познать гидрологические процессы в любом водном объекте необходимо изучить, во-первых, явления, происходящие в водной толще рассматриваемого объекта (перемешивание вод, формирование температурной и плотностной стратификации, образование внутриводного льда, продуцирование кислорода благодаря жизнедеятельности зелёных растений и т. д.); во-вторых, процессы на твёрдых границах водного объекта – его дне и берегах (взаимодействие водного потока и грунтов, размыв грунта или аккумуляция наносов и т. д.); в-третьих, явления, происходящие на водной поверхности водного объекта – границе раздела вода–воздух (тепло- и газообмен с атмосферой, испарение воды и конденсация водяного пара, образование или таяние ледяного покрова, возникновение волн и течений под действием ветра и т. д.); в-четвёртых, взаимосвязь данного водного объекта с его водосбором (условия формирования стока воды, наносов, растворённых веществ, теплоты и т. д.).

В качестве примера рассмотрим некоторые характерные черты водного, термического и ледового режима рек в климатических условиях средней полосы России.

Водный режим рек

Во внутригодовом (сезонном) режиме таких рек выделяют ряд типичных периодов (фаз). Для большинства рек различают следующие фазы водного режима: половодье , паводки , межень . Эти фазы режима зависят прежде всего от характера водного питания рек. Выделяют четыре вида (источника) водного питания рек: снеговое, дождевое, ледниковое, подземное.

Половодье – это фаза водного режима реки, ежегодно повторяющаяся в данных климатических условиях в один и тот же сезон и характеризующаяся наибольшей водностью , высоким и продолжительным подъёмом уровня воды. Половодье формируется как талыми снеговыми, так и дождевыми водами. Таяние снега на равнинах вызывает весеннее половодье, таяние высокогорных снегов и ледников, а также выпадение длительных и сильных летних дождей (например, в условиях муссонного климата) – половодье в тёплую часть года (т. е. весенне-летнее или летнее половодье). Половодье, особенно обусловленное дождями, нередко имеет многовершинную форму.

Паводок – это фаза водного режима, которая может многократно повторяться в различные сезоны года и характеризуется интенсивным, обычно кратковременным увеличением расходов и уровней воды и вызывается дождями или снеготаянием во время оттепелей. В отдельных случаях расход воды на пике паводка может превысить максимальный расход воды половодья, в особенности на малых реках. Различают однопиковые и многопиковые паводки, одиночные паводки и паводочные периоды, когда на реке проходят серии паводков. Иногда паводок накладывается на волну половодья.

В половодья (как весеннее, так и летнее) часто заливается речная пойма . За исключением катастрофических случаев, заливание поймы – событие обычное, регулярное и поэтому не может стать неожиданным для населения и хозяйства. В отличие от половодья паводки обычно менее регулярны и трудно предсказуемы. Поэтому именно неожиданные дождевые паводки и приводят нередко к катастрофическим последствиям.

Межень – это фаза водного режима, ежегодно повторяющаяся в один и тот же сезон, характеризующаяся малой водностью, длительным стоянием низкого уровня и возникающая вследствие уменьшения питания реки. В межень реки обычно питаются только подземными водами. На многих реках России выделяют два периода пониженного стока – летнюю и зимнюю межень. В условиях холодного климата малые реки зимой могут иногда промерзать до дна. В условиях засушливого климата малые реки в летнюю межень могут пересыхать.

Для характеристики сезонных изменений водного режима рек обычно строят графики изменения расходов воды в течение года (гидрографы) для типичных по водности лет: самого многоводного и самого маловодного года за весь период наблюдений и года, близкого по водности к средней.

В нашей стране широко распространена довольно простая классификация рек по водному режиму. В этой классификации все реки бывшего СССР (исключая искусственно сильно зарегулированные) разделены на три большие группы: с весенним половодьем, с половодьем в тёплую часть года и с паводочным режимом.

На первом рисунке приведен схематический гидрограф – график изменения расхода воды в течение года (от января до декабря), типичный для рек с весенним половодьем и осенними паводками. Здесь же показано расчленение гидрографа на три вида водного питания: снеговое (в период половодья), дождевое (при паводках) и подземное (грунтовыми водами) (в зимнюю и летнюю межень). У разных рек или даже разных участков одной и той же реки разделение снегового и подземного питания во время половодья представляет сложную гидрологическую задачу. Это разделение зависит от гидрогеологических условий ближайших к реке территорий: водопроницаемости грунтов, высоты залегания водоупора и др. Поэтому в разных условиях возможно разное сочетание снегового и подземного питания и во время половодья. У некоторых рек на пике половодья подземное питание вообще прекращается, и речные воды в это время питают водоносные горизонты . В других случаях в период половодья подземное питание реки, наоборот, возрастает. Возможны и промежуточные ситуации.

Термический режим рек

Поскольку на температуру воды в реке влияют изменения температуры воздуха, основная причина временных изменений температуры воды в реках – метеорологическая.

В условиях умеренного климата наиболее типичны сезонные изменения температуры воды в реках, показанные на втором рисунке. Зимой под ледяным покровом вода у поверхности реки имеет температуру около 0°С. Весной в период повышения температуры воздуха и осенью в период её понижения изменения температуры воды следуют с некоторым отставанием за изменениями температуры воздуха. Максимальная температура воды по величине меньше максимальной температуры воздуха (например, на реках Подмосковья эти температуры соответственно равны приблизительно 22–24 и 28–30°С). Максимум температуры воды наступает несколько позже максимальной температуры воздуха. В связи с тем, что температура воды в реках, как правило, не может приобретать отрицательные значения, среднегодовая температура воды в реках заметно выше, чем среднегодовая температура воздуха.

Помимо сезонных колебаний температура воды в реках обычны и её суточные изменения, которые также отстают от изменения температуры воздуха. Минимальная температура воды обычно наблюдается в утренние часы, максимальная – в 15–17 часов (максимум температуры воздуха обычно наступает на 1–2 ч раньше). На больших реках суточные изменения температуры воды обычно не более 1–2°С, на малых реках они могут быть заметно больше. Суточные колебания температуры воды хорошо выражены на реках, берущих начало из ледников.

Температура речной воды имеет и пространственные изменения. Хорошо известно подчиняющееся широтной зональности изменение температуры воды вдоль крупных рек, текущих в меридиональном направлении. У таких рек наибольшее различие температуры воды вдоль реки отмечается в период нагревания. Часто температура воды в реках изменяется ниже впадения крупных притоков, или весенних ледовых явлений. Замерзание и вскрытие реки происходит через несколько дней после перехода температуры воздуха через 0ºС.

В периоды осенних и весенних ледовых явлений обычно наблюдаются осенний и весенний ледоходы , заторы и зажоры .

В.Н. Михайлов, М.В. Михайлова

Русская народная традиция - купаться в проруби в Крещенье, 19 января, привлекает все больше и больше людей. В этом году в Петербурге были организованы 19 прорубей, называемых «купель» или «иордань». Проруби были хорошо оснащены деревянными мостками, везде дежурили спасатели. И интересно, что, как правило, купающиеся люди говорили журналистам, что они очень довольны, вода теплая. Я сама не купалась зимой, но знаю, что вода в Неве действительно, по данным измерений была + 4 + 5 °С, что значительно теплее температуры воздуха - 8 °С.

Тот факт, что температура воды подо льдом на глубине в озерах и реках выше нуля на 4 градуса известен многим, но, как показывают обсуждения на некоторых форумах, не все понимают причину этого явления. Иногда повышение температуры связывают с давлением толстого слоя льда над водой и изменением в связи с этим температуры замерзания воды. Но большинство людей, успешно изучавших физику в школе, уверенно скажут, что температура воды на глубине связана с известным физическим явлением - изменением плотности воды с температурой. При температуре +4°С пресная вода приобретает свою наибольшую плотность .

При температурах вблизи 0 °С вода становится менее плотной и более легкой. Поэтому при охлаждении воды в водоёме до +4 °С прекращается конвекционное перемешивание воды, дальнейшее её охлаждение происходит только за счет теплопроводности (а она у воды не очень высокая) и процессы охлаждения воды резко замедляются. Даже в лютые морозы, в глубокой реке под толстым слоем льда и слоем холодной воды всегда будет вода с температурой +4 °С. До дна промерзают лишь мелкие пруды и озера.

Мы решили разобраться, почему при охлаждении вода ведет себя так странно. Оказалось, что исчерпывающее объяснение этому явлению еще не найдено. Существующие гипотезы не нашли пока экспериментального подтверждения. Надо сказать, что вода — не единственное вещество, имеющее свойство расширяться при охлаждении. Подобное поведение характерно также для висмута, галлия, кремния и сурьмы. Однако именно вода вызывает наибольший интерес, поскольку является веществом, очень важным для жизнедеятельности человека и всего растительного и животного мира.

Одна из теорий - существование в воде двух типов наноструктур высокой и низкой плотности, которые изменяются с температурой и порождают аномальное изменение плотности. Ученые, изучающие процессы переохлаждения расплавов, выдвигают следующее объяснение. При охлаждении жидкости ниже температуры плавления внутренняя энергия системы уменьшается, подвижность молекул снижается. В то же самое время усиливается роль межмолекулярных связей, за счет которых могут формироваться разнообразные надмолекулярные частицы. Опыты ученых с переохлажденным жидким о_терфенилом позволили предположить, что в переохлажденной жидкости со временем может образовываться динамическая «сетка» из более плотно упакованных молекул. Эта сетка разделяется на ячейки (области). Молекулярные переупаковки внутри ячейки задают скорость вращения молекул в ней, а более медленная перестройка самой сетки приводит к изменению этой скорости во времени. Что-то подобное может происходить и в воде.

В 2009 г. японский физик Масакадзу Мацумото, используя компьютерное моделирование, выдвинул свою теорию изменения плотности воды и опубликовал ее в журнале Physical Review Letters (Why Does Water Expand When It Cools?) («Почему вода при охлаждении расширяется?»). Как известно, в жидкой форме молекулы воды посредством водородной связи объединяются в группы (H 2 O) x , где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют тетраэдральный угол, равный 109,47 градуса.

Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, препятствуют такому объединению, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами. В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

На рисунке шесть типичных витритов, образующих внутреннюю структуру воды. Шарики соответствуют молекулам воды, отрезки между шариками обозначают водородные связи. Рис. из статьи Masakazu Matsumoto, Akinori Baba, and Iwao Ohminea.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами, некоторые витриты принимают структурно неравновесные конфигурации, которые позволяют всей системе в целом получить наименьшее значение энергии среди возможных. Такие назвали фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом. Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры, по мнению ученых, вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты,преобладает, что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Это объяснение основано пока только на компьютерном моделировании. Экспериментально его очень трудно подтвердить. Исследование интересных и необычных свойств воды продолжается.

Источники

О.В. Александрова, М.В. Марченкова, Е.А. Покинтелица «Анализ термических эффектов, характеризующих кристаллизацию переохлажденных расплавов» (Донбасская национальная академия строительства и архитектуры)

Ю. Ерин. Предложена новая теория, объясняющая, почему вода при нагревании от 0 до 4°C сжимается (

ПРУД ЗИМОЙ

Дата: 12.1.10 | Раздел: Водоемы

С наступлением холодов все в саду замирает. Однако следует помнить, что в замерзших прудах будут зимовать рыбки и другая живность. Нужно основательно подготовить пруд к зиме, это особенно важно для водоемов глубиной около 1 метра.

Когда температура воды опускается до 8 °С, жив­ность, обитающая в пруду, переходит в состоя­ние глубокого сна. В зависимости от темпера­туры воды нужно постепенно снижать порцию корма. В этот период у рыб притупляются вкус и обоняние, они реагируют только на движение воды, перепады давления и прикосновения. Они опускаются на дно, выбирая самые глубо­кие и теплые места водоема - там они прово­дят всю зиму. На глубине 1 метра температура воды примерно 5 °С - этого вполне достаточно, чтобы рыбки смогли перезимовать. Однако в местах, где скапливаются живые организмы, очень часто не хватает кислорода. Если пруд долгое время находится подо льдом, то газы не выходят наружу и рыбы могут погибнуть.

Перед первыми заморозками

Об условиях зимовки рыб в водоеме следует подумать за pa нее до наступления первых замо­розков. Осенью совсем не обязательно срезать тростник и камыш. Благодаря колыхающимся от ветра растениям вода в том месте, где они растут, замерзнет в самый последний момент.

Чтобы не весь пруд покрылся льдом, стоит выпустить на воду так называемый пенопласто­вый поплавок(продается в специализированных садовых магазинах). Эта конструкция состоит из кольца и крышки (крышку следует убрать, если необходимо открыть лунку во льду). Вода под кольцом не замерзнет, если нижняя часть будет погружена на глубину не менее 10 см. В коль­це находятся специальные камеры, в которые можно насыпать песок или камни. Когда тем­пература опустится до -8 °С, лунка под крыш­кой замерзает. Тогда в пенопластовый поплавок необходимо вмонтировать специальный нагре­ватель или компрессор. Также в поплавок можно закладывать пучки рубленого тростника, благо­даря которому вода в лунках не замерзнет и воз­обновится процесс газообмена.

На ледяной глади

Во время сильных морозов льдом покроется вся поверхность пруда. В нескольких местах необходимо сделать лунки. Для сверления лунок в толстом льду лучше всего подойдет коло­ворот, или ледобур, который вырезает отверстия диаметром около 1 5 см даже в самом тол­стом льду. Чем больше лунка, тем лучше. Чтобы проруби не замерзали, в лунки можно положить пучки тростника.

Первая зимовка

Если водоем, заселенный рыбками, был обу­строен только в этом сезоне, то первая зимовка может стать серьезным испытанием, из кото­рого нужно будет извлечь необходимые уроки. Например, неправильное и чрезмерное корм­ление обитателей вашего водоема могло при­вести к засорению дачного прудика. Бесспорно, это усложнит зимовку ваших рыбок. Им также придется побороться за выживаемость, если при заселении вы нарушили рекомендуемые нормы: на каждую рыбку длиной 10-15 см должно приходиться не менее 50 литров воды. Покупая питомцев для своего рукотворного пруда, не забывайте узнавать, каков макси­мальный размер взрослой особи. Одно из глав­ных условий здоровой зимовки - достаточное количество кислорода. Преимущества имеют водоемы с большей поверхностью, но они при этом не должны быть мелкими, иначе есть опас­ность полного промерзания.

Как сделать поплавок

Из куска пенопласта необходимо вырезать кольцо диаметром 40-50 см. Внутренний диаметр будет зависеть от тол­щины пучка тростника , который необхо­димо вставить в сере­дину . Чем больше кольцо , тем лучше . Тростник , длина которого составляет примерно 60 см, необходимо поме­стить в пенопласт в виде плотного пучка так , чтобы 2/3 его длины находились под водой . Кольцо следует опустить на воду перед тем , как водоем замерзнет . Чтобы кольцо не дрейфовало , его необходимо зафиксировать на поверхности воды при помощи «якоря» из обломка кирпи­ча , привязанного к поплавку . Так как гиря будет лежать на дне , длина лески должна быть боль ше , чем глубина водоема .

Сложная проблема в домашнем рыбоводстве - это перезимовка рыбы.

Рыбоводы-любители применяют разнообразные приемы для предотвращения зимнего замора. Чаще всего после замерзания водоема, когда лед имеет толщину 1,5 - 2,5 см, прорубают лунку и через нее откачивают воду. Образовавшаяся воздушная полость между поверхностью воды и льдом высотой 15 - 20 см насыщает кислородом воду. Лунку во

льду закрывают, утепляют, чтобы холод не проникал к поверхности воды и не заморозил ее снова. Полезно в этом случае утеплить лед снегом.

Можно организовать зимовку рыбы по-другому. С наступлением осеннего похолодания при температуре воды ниже 8° рыба перестает кормиться. Пруд освобождают от воды. Часть рыб (декоративные и предназначенные на доращивание) помещаю в зимовальную яму. Это бетонный колодец диаметром 70 см, глубиной 2,5 м, где она находится до весеннего снеготаяния, то есть до конца марта следующего года. Уровень воды в нем в течение зимы уменьшается с 2,2 до 1,7 м. Вырытая в непромерзающем болотистом грунте, закрытая сверху деревянным шитом, а зимой и снегом, зимовальная яма-колодец сохраняет внутри плюсовую температуру всю зиму. Вода в ней не замерзает и кислород из надводной воздушной прослойки свободно обогащает воду, спасая рыбу от замора. Долго я искал и спрашивал на форумах о разнообразных приемах для предотвращения зимнего замора,и вот нашел как раньше спасали без электричества.Это где приспустить можно воду из подо льда а лед задержат мелководья и бугринки подо льдом,и будут пустоты заполненые воздухом.

Почему вода в водоёмах зимой не промерзает до самого дна?

    Здравствуйте!

    Температура наибольшей плотности воды: +4 С см: http://news.mail.ru/society/2815577/

    Это свойство воды является принципиально важным для выживания живности многих водомов. Когда начинается понижение температуры воздуха (и соответственно - воды) осенью и в предзимье, сначала при температуре выше +4 С более холодная вода с поверхности водома опускается вниз (как более тяжлая), а тплая, как более лгкая, поднимается вверх и идт обычное вертикальное перемешивание воды. Но как только во всм водоме по вертикали устанавливается Т= +4 С, процесс вертикальной циркуляции останавливается, поскольку с поверхности вода уже при +3С становится легче той, что находится ниже (при +4С) и турбулентная теплопередача холода по вертикали резко сокращается. В итоге с поверхности вода даже начинает замерзать, потом устанавливается и ледяной покров, но при этом в зимний период передача холода в нижние слои воды резко уменьшается, так как и сам слой льда сверху, и тем более, слой выпавшего на лд сверху снега обладают определ1нными теплоизоляционными свойствами! Поэтому у дна водома почти всегда остатся хотя бы тонкий слой воды при Т=+4С - а это и есть температура выживания в водоме речной, болотной, озрной и пр. живности. Если бы не это интересное и важное свойство воды (Мах плотность при +4С), то водомы на суше все промерзали бы до дна каждую зиму, и жизнь в них не была бы такой обильной!

    Всего доброго!

    Здесь работает очень важное свойство воды. Твердая вода (лед) легче своего жидкого состояния. Благодаря этому лед всегда находится сверху и защищает нижние слои воды от мороза. Только очень мелкие водоемы в очень сильный мороз могут промерзать до дна. В обычных случаях под слоем льда всегда находится вода, в которой сохраняется вся подводная жизнедеятельность.

    Все зависит от силы морозов,иногда даже глубокие стоячие водоемы могут замерзать до дна. если морозы под минус 40 стоят несколько недель. Но в основном, действительно, водоемы не промерзают, что дает возможность выжить обитающим в них рыбам и растениям. А дело тут в таком любопытном свойстве воды, как отрицательный коэффициент расширения, который имеет вода при температуре от +4 градусов и ниже. То есть если вода нагрета выше 4 градусов, то при увеличении ее температуры она будет стремиться занять больший объем, ее плотность уменьшается и он поднимается вверх. Если же вода остывает ниже 4 градусов ситуация меняется на противоположную - чем холоднее вода, тем легче она становится и тем меньше ее плотность, а следовательно более холодные слои воды стремятся наверх, а имеющие температуру +4- вниз. Таким образом подо льдом температура воду устанавливается в +4 градуса. Пограничные слои воды рядом со льдом будут либо подтапливать лед, либо подмерзать сами, увеличивая толщину льда, пока не установится динамическое равновесие - сколько льда растает от теплой воды, столько воды замерзнет от холодного льда. Ну а про теплопроводность льда сказано уже все.

    Вы упустили очень важный момент: самая большая плотность воды - при температуре +4 градуса. Поэтому, прежде чем водоем начнет замерзать, вся вода в нем, перемешиваясь, охлаждается до этих самых плюс четырех, а уж затем верхний слой охлаждается до нуля и начинает замерзать. Так как лед легче воды, он не опускается на дно, а остается на поверхности. Кроме того, лед имеет очень малую теплопроводность и это резко уменьшает теплообмен между холодным воздухом и слоем воды подо льдом.



Loading...Loading...