Что первое гром или молния. Что страшнее: гром или молния

Тучи раскинули крылья и солнце от нас закрыли…

Почему иногда во время дождя мы слышим гром и видим молнию? Откуда берутся эти вспышки? Вот сейчас мы подробно об этом и расскажем.

Что же такое – молния?

Что такое молния ? Это удивительное и очень загадочное явление природы. Она почти всегда бывает во время грозы. Кого-то изумляет, кого-то пугает. Пишут о молнии поэты, изучают это явление ученые. Но многое осталось неразгаданным.

Одно известно точно – это гигантская искра. Словно взорвался миллиард электрических лампочек! Длина ее огромна – несколько сотен километров! И от нас она очень далеко. Вот почему сначала мы видим ее, а только потом – слышим. Гром – это «голос» молнии. Ведь свет долетает до нас быстрей, чем звук.

А еще молнии бывают на других планетах. Например, на Марсе или Венере. Обычная молния длится всего долю секунды. Состоит она при этом из нескольких разрядов. Появляется молния иногда совсем неожиданно.

Как образуется молния?

Рождается молния обычно в грозовом облаке, высоко над землей. Грозовые облака появляются, когда воздух начинает сильно нагреваться. Вот почему после сильной жары бывают потрясающие грозы. Миллиарды заряженных частичек буквально слетаются в то место, где она зарождается. И когда их собирается очень-очень много, они вспыхивают. Вот откуда берется молния – из грозовой тучи. Она может ударить в землю. Земля притягивает ее. Но может разорваться и в самом облаке. Все зависит от того, какая это молния.

Какие бывают молнии?

Виды молний бывают разные. И знать об этом нужно. Это не только «ленточка» на небе. Все эти «ленточки» отличаются друг от друга.

Молния – это всегда удар, это всегда разряд между чем-то. Их насчитывают более десяти! Назовем пока только самые основные, прилагая к ним картинки молнии:

  • Между грозовой тучей и землей. Это те самые «ленточки», к которым мы привыкли.

Между высоким деревом и тучей. Та же самая «ленточка», но удар направлен в другую сторону.

Ленточная молния – когда не одна «ленточка», а несколько параллельно.

  • Между облаком и облаком, или просто «разыграется» в одном облаке. Такой вид молнии часто можно увидеть во время грозы. Просто нужно быть внимательным.

  • Бывают и горизонтальные молнии, которые земли вообще не касаются. Они наделены колоссальной силой и считаются самыми опасными

  • А о шаровых молниях слышали все! Мало только, кто их видел. Еще меньше тех, кто желал бы их увидеть. А есть и такие люди, которые в их существование не верят. Но шаровые молнии существуют! Сфотографировать такую молнию сложно. Взрывается она быстро, хотя может и «погулять», а вот человеку рядом с ней лучше не двигаться – опасно. Так что – не до фотоаппарата тут.

  • Вид молнии с очень красивым названием – «Огни Святого Эльма». Но это не совсем молния. Это сияние, которое появляется в конце грозы на остроконечных зданиях, фонарях, корабельных мачтах. Тоже искра, только не затухающая и не опасная. Огни Святого Эльма – это очень красиво.

  • Вулканические молнии возникают при извержении вулкана. Сам вулкан уже имеет заряд. Это, вероятно, и является причиной возникновения молнии.

  • Спрайтовые молнии – это такие, которые с Земли не увидишь. Они возникают над облаками и их изучением пока мало кто занимается. Молнии эти похожи на медуз.

  • Пунктирная молния почти не изучена. Наблюдать ее можно крайне редко. Визуально она действительно похожа на пунктир – будто молния-ленточка тает.

Вот такие вот бывают молнии разные. Только закон для них один – электрический разряд.

Заключение.

Еще в древности молния считалась и знамением, и яростью Богов. Она была загадкой раньше и остается ею сейчас. Как бы ни раскладывали ее на мельчайшие атомы и молекулы! И всегда это – безумно красиво!

Молния представляет собой мощнейший разряд электрической энергии. Природа его возникновения заключается в сильной электризации туч либо земной поверхности. По этой причине разряды происходят в самих облаках или между двумя соседними, или между облаком или землей. Большинство людей грозы боится. Явление действительно страшное. Мрачного вида тучи укрывают солнце, громыхает гром, сверкает молния, идет сильный ливень. Но откуда берется молния, как объяснить ребенку, что происходит наверху?

Откуда берется гром и молния объяснение для детей

Гремит гром и появляются молнии. Процесс возникновения молнии разделяют на первый удар и все последующие. Причина в том, что первичный удар создает путь для электороразряда. В нижней части тучи накапливается отрицательный разряд.

А положительным зарядом обладает земная поверхность. По этой причине электроны, расположенные в туче, притягиваются к земле и устремляются вниз. Как только первые электроны достигают поверхности земли, создается свободный для пропуска электрических разрядов канал, по которому оставшиеся электроны устремляются вниз. Электроны возле земли первыми уходят из канала. На их место спешат попасть другие. Создается условие, при котором весь отрицательный разряд энергии выходит из тучи, создавая мощный поток электричества, направленный в землю. Вот в такой момент и возможна вспышка молнии, сопровождающаяся раскатом грома.

Откуда берется шаровая молния

Молнии называют шаровыми? Такая молния считается особым видом, представляет собой плывущий по воздуху светящийся шар. Размер ее от десяти до двадцати сантиметров, цвет голубой, оранжевый или белый. Температура такого шара настолько велика, что при неожиданном разрыве окружающая его жидкость испаряется, а металлические или стеклянные предметы плавятся.

Существовать такой шарик способен длительное время. При перемещении он может неожиданно сменить свое направление, зависнуть в воздухе на несколько секунд, резко отклониться в одну из сторон.


Образуется шаровая молния чаще всего во время грозы, но бывают случаи, когда ее видят в солнечную погоду. Ее появление происходит в одном экземпляре, неожиданно. Шар способен спуститься с туч, появиться в воздухе из-за столба или дерева довольно неожиданно. Она способна проникнуть в замкнутое пространство через розетку, телевизор.

Откуда гроза и молния

Стихии, чтобы проявить свою силу, необходимы определенные обстоятельства. Наэлектризованные облака создают молнию. Но чтобы пробить атмосферный слой, не в каждом облаке содержится достаточная для этого мощность. Грозовым будет считаться то облако, высота которого достигает нескольких тысяч метров. Низ тучи располагается у земной поверхности, температурный режим там выше, чем в верхней части облака, где капли воды способны замерзать.

Массы воздуха находятся в постоянном движении. Теплый воздух уходит вверх, – опускается. При движении частиц они электризуются. В различных частях облака накапливается неодинаковый потенциал. При достижении критического значения происходит вспышка, которую сопровождают раскаты грома.

Опасные молнии

Обычно за первым ударом следует второй. Связано это стем, что электроны на первой вспышке ионизируют воздух, создавая возможность второму прохождению электронов. Поэтому последующие вспышки происходят почти без пауз, ударяя в одно и то же место. Появляющаяся из тучи молния способна причинить существенный вред своим электрическим разрядом для человека. Даже если ее удар придется рядом, последствия негативно скажутся на здоровье.

При грозе необходимо быть на суше, как можно ближе к поверхности земли. Желательно при этом не пользоваться мобильными устройствами.

Гроза – атмосферное явление пусть не такое уж и редкое, как, к примеру, северное сияние или огни святого Эльма, но от этого не менее яркое и впечатляющее своей неукротимой силой и первозданной мощью. Недаром ее так любят описывать в своих произведениях все поэты и прозаики романтического толка, а профессиональные революционеры видят в грозе символ народных волнений и серьезных социальных потрясений. С научной же точки зрения гроза это ливневый дождь, сопровождаемый шквалистым усилением ветра, молниями и раскатами грома. Но, если с ливнем и ветром вам, наверное, и так все понятно, то об остальных составляющих грозы стоит рассказать немного подробнее.

Что такое гром и молния

Молниями называют мощные электрические разряды в атмосфере, которые могут возникать как между отдельными кучевыми облаками, так и между дождевыми облаками и землей. Молния – это своего рода гигантская электрическая дуга, длина которой в среднем составляет 2,5 – 3 километра. О невероятной силе молний говорит тот факт, что ток в разряде достигает десятков тысяч ампер, а напряжение – нескольких миллионов вольт. С учетом того, что такая фантастическая мощность высвобождается в течении нескольких миллисекунд, разряд молнии вполне можно назвать своего рода электрическим взрывом невероятной силы. Понятно, что подобная детонация неизбежно вызывает появление ударной волны, которая затем вырождается в звуковую, и затухает по мере распространения в воздушной среде. Таким образом становиться очевидным, что такое гром.

Гром - это звуковые колебания, возникающие в атмосфере под влиянием ударной волны, вызванной мощным электрическим разрядом. С учетом того, что воздух в канале молнии мгновенно разогревается до температуры около 20 тысяч градусов, что превышает температуру поверхности Солнца, такой разряд неизбежно сопровождается оглушительным грохотом, как и любой другой очень мощный взрыв. Но ведь молния длиться меньше секунды, а гром мы слышим длинными раскатами. Отчего же так происходит, почему гремит гром? У ученых, изучающих атмосферные явления, есть ответ и на этот вопрос.

Почему мы слышим раскаты грома

Раскаты грома возникают в атмосфере из-за того, что молния, как мы уже говорили, имеет весьма большую длину и поэтому звук от различных ее участков доходит до нашего уха не одновременно, хотя саму световую вспышку мы видим целиком в один момент. Кроме того, возникновению громовых раскатов способствует отражение звуковых волн от облаков и поверхности земли, а также их рефракция и рассеивание.

Доклад

Гром и молния

Гром - звуковое явление в атмосфере, сопровождающее разряд молнии. Гром представляет собой колебания воздуха под влиянием очень быстрого повышения давления на пути молнии, вследствие нагревания приблизительно до 30 000 °С. Раскаты грома возникают из-за того, что молния имеет значительную длину и звук от разных её участков и доходит до уха наблюдателя не одновременно, кроме того возникновению раскатов способствует отражение звука от облаков, а также потому, что из-за рефракции звуковая волна распространяется по различным путям и приходит с различными запаздываниями, кроме того сам разряд происходит не мгновенно, а продолжается конечное время.

Громкость раскатов грома может достигать 120 децибел.

Измеряя интервал времени прошедший между вспышкой молнии и ударом грома можно приблизительно определить расстояние, на котором находится гроза. Так как скорость света очень велика по сравнению со скоростью звука, то ею можно пренебречь, учитывая лишь скорость звука, которая составляет приблизительно 350 метров в секунду. (Но скорость звука очень изменчива, зависит от температуры воздуха, чем она ниже, тем меньше скорость.) Таким образом, умножив время между вспышкой молнии и ударом грома в секундах на эту величину, можно судить о близости грозы, а сопоставляя подобные измерения, можно судить о том, приближается ли гроза к наблюдателю (интервал между молнией и громом сокращается) или удаляется (интервал увеличивается). Как правило, гром слышен на расстоянии до 15-20 километров, таким образом, если наблюдатель видит молнию, но не слышит грома, то гроза находится на расстоянии не менее 20 километров.

Искровой разряд (искра электрическая) - нестационарная форма электрического разряда, происходящая в газах. Такой разряд возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом - «треском» искры. Температура в главном канале искрового разряда может достигать 10 000 К. В природе искровые разряды часто возникают в виде молний. Расстояние "пробиваемое" искрой в воздухе зависит от напряжения и считается равным 10 кВ на 1 сантиметр.

Иcкровой разряд обычно происходит, если мощность источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда. В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько микросекунд до нескольких сотен микросекунд) падает ниже напряжения погасания искрового разряда, что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для этого разряда, но они являются лишь переходным процессом, ведущим к установлению разряда другого типа - чаще всего дугового. Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то наблюдается форма самостоятельного разряда, называемая искровым разрядом.

Искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок - искровых каналов. Эти каналы заполнены плазмой, в состав которой в мощном искровом разряде входят не только ионы исходного газа, но и ионы вещества электродов, интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения искрового разряда) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определенных условиях образуются стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Среди них можно выделить т. н. лидер - слабо светящийся разряд, «прокладывающий» путь для основного разряда. Он, двигаясь от одного электрода к другому, перекрывает разрядный промежуток и соединяет электроды непрерывным проводящим каналом. Затем в обратном направлении по проложенному пути проходит главный разряд, сопровождаемый резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры (в случае молнии - гром).

Напряжение зажигания искрового разряда, как правило, достаточно велико. Напряженность электрического поля в искре понижается от нескольких десятков киловольт на сантиметр (кв/см) в момент пробоя до ~100 вольт на сантиметр (в/см) спустя несколько микросекунд. Максимальная сила тока в мощном искровом разряде может достигать значений порядка нескольких сотен тысяч ампер.

Особый вид искрового разряда - скользящий искровой разряд, возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами, при условии превышения напряженностью поля пробивной прочности воздуха. Области скользящего искрового разряда, в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика, образуя при этом так называемые фигуры Лихтенберга. Процессы, близкие к происходящим при искровом разряде, свойственны также кистевому разряду, который является переходной стадией между коронным и искровым.

Молния - гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-20 тысяч ампер, поэтому мало кому из людей удается выжить после поражения их молнией.

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км. Ток в разряде молнии достигает 10-20 тысяч ампер.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии, а могут ударять в землю - наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главная -> Энциклопедия ->

Почему и как происходит молния и гром?

Все очень просто - гром это звук от молнии. Молния - это электрический разряд. Видела, как в розетке искры вспыхивают? То же самое.
С одной стороны - заряженное небо (много воды в тучах, в воде - куча электрических зарядов), с другой - заряженная земля. Когда энергии очень много, происходит ее разряд (как искры в той самой розетке). Только молния - это оооочччеееннньь большая искра. Ну, а про гром я уже говорил - он от молнии. Молния ударяет, проходит через воздух, воздух мгновенно нагревается, расширяется и - ба-бах! Как воздушный шарик - когда он лопается, то звук происходит от быстрого расширения газа из него выходящего.
Интересно, что очень просто рассчитать, как далеко от тебя "бабахнуло" - свет от молнии ты увидишь мгновенно (скорость света очень большая), а гром услышишь через несколько секунд (скорость звука в воздухе около 300 метров в секунду). Считай секунды между молнией и звуком и дели на 3. Получишь расстояние до сверкнувшей молнии в километрах. (Например, если между молнией и громом прошло 6 секунд, до она ударила в землю 6:3 - в 2 км от тебя).
А что бы молния не била куда попала, изобрели громотвод. Осталось только плащи с громоотводом изобрести, что бы и людям молния не была страшна:-)))
Есть еще шаровая молния, но с ней все сложнее - никто толком до сих пор не знает, что это такое и откуда берется...

А если тебе действительно хочется узнать точный ответ на свой вопрос - посмотри



Loading...Loading...